

 |

 |

 (\ |

 . ` ' {(((-](8 |

 ' (/ |

 `. |

 . ANAGALLIS |

 `. |

 . A PROGRAM FOR PARSIMONY ANALYSIS |

 , OF CHARACTER HIERARCHIES ' | '

 . \ ^ /

 ' `---[x]---'

 ` . _._ ,'/°-°\`.

 ` . _ / \ _ / | | \

 , .' \ / `.

 . , ' ` . \ _.[o]._ /

 ` . . / | \

 __/ __/

 ' '

 v1.02a - 27 May 2020

 provided as is and without warranty of any kind

 Jan De Laet, Gothenburg Botanic Garden

 This documentation dump was generated with command

 'help dump of anagallis_1.02a_27MAY2020 w80'

 It is formatted to view with a non-proportional font

 and 80 characters per line

 __

 (\ ,--' `--.

 '>< - ;°-<

 (/ `--.__,.-'

USAGE anagallis [--help][-c][-h][-s][-v] [commands]

=====

 --help Show usage information and program options, and exit

 -c Start the program with context-sensitive help enabled (as if command

 'program set context =' ('psc =') is executed)

 -h Show usage information and program options, and exit

 -s Suppress display of program header at the start of an interactive

 session

 -v Show program version and exit

 commands A command sequence as it would be entered from the program prompt

 (use ';' as command separator). To pass the commands properly,

 characters with special meaning in the shell from which the program

 is called (such as ';' or '*' in most shells) must be escaped. It

anagallis version 1.02a (27 May 2020) documentation - 2/65

 mostly suffices to put the sequence between single quotes.

After the command sequence is executed, the program prompt is displayed. To

execute commands in file 'fname', put command 'script execute start fname'

('sestafname') in the command sequence. Full batch mode can be achieve by

including command 'program quit' ('pq') in the command sequence or in the

command file.

A list of known bugs and issues is maintained at www.anagallis.be/anagallis.

Use command 'help summary' ('hs') for an overview of commands and help topics

('hsc' for just commands, 'hst' for just topics), 'help dump f fname' ('hd f

fname') for a dump of all documentation to file 'fname', 'help command - help'

('hc-h' or '?h') for more information about the help command.

Command 'program set context =' ('psc=') enables context sensitive help.

Some commands to get general information about character hierarchies:

 * basic theory 'help topic - background theory'

 * outline of the main algorithm 'help topic - background algorithm'

 * state reconstructions 'ht - br'

 * scope of the current algorithm 'ht - bs'

(Use 'help topic r - background' to view all this with one command.)

Some help commands to get more information about how to work with character

hierarchies:

 * read character data '? crn'

 * define character hierarchies '? cps'

 * search for optimal trees '? tseam'

 * list summary scores of character hierarchies '? csc'

 * plot character hierarchy optimizations '? cdp'

OVERVIEW OF HELP TOPICS AND COMMANDS

====================================

> name, shortest unambiguous abbreviation, short description

Help topics

 background b Background

 theory bt Basic theory

 algorithm baa Outline of the main optimization algorithm

 reconstructions br Aggregate and non-aggregate final statesets

 scope bs Scope and limits of the current algorithm

 program p Program

 commands pc Command structure

 treebuffer ptr Tree buffer

 input pi Input

 native pinn anagallis data formats

 import pii Importing other data formats

 tntmode ptn TNT mode

 references r References

anagallis version 1.02a (27 May 2020) documentation - 3/65

Regular commands

 " " echo the input until an end-of-command character

 # # skip input until the end of the input line

 > > provide context-sensitive help (only available

 from the command prompt under 'program set context

 =' or 'psc=')

 ? ? shorthand for 'help command -': use '?xyz' for

 basic help about command 'xyz'

 characters c current number of characters and terminals; has

 optional subcommands

 diagnose cd show character state optimizations on tree nodes;

 requires a subcommand

 plot cdp show tree plots of character state optimizations

 tabulate cdt show tables of character state optimizations

 properties cp set/show basic character properties or show

 derived character properties; requires a

 subcommand

 minmax cpm list minimum and maximum number of steps for all

 characters outside character hierarchies

 set cps set/show basic character properties (defaults:

 prior weight 1, active, non-additive, not part of

 a character hierarchy)

 read cr read character data; requires a subcommand (use

 command 'import' to import TNT or nexus character

 data)

 alphanumeric cra read character data with up to 30 regular

 character states coded as 0-9 and a-t (or A-T)

 numeric crn read character data with up to ten regular

 character states coded as 0-9

 score csc a summary of the scores of all characters and

 character hierarchies on one or more trees

 show csh show the current dataset

 help h show basic usage information and program options;

 has optional subcommands to get more detailed

 information

 command hc show information about a specific regular command

 dump hd show all built-in program documentation

 summary hs overview of available commands and/or help topics

 topic ht get information about a specific help topic

 import i import data from other file formats; requires a

 subcommand

 nexus in execute a nexus datafile (supported nexus subset

 still empty in this version)

 tnt it execute a TNT datafile (limited support for a tiny

 subset of TNT commands)

 log l name and status of log file, if there is one; has

 optional subcommands

 pause lp suspend output to the logfile

 resume lr resume output to the logfile

 start lsta open a log file (append mode by default)

 stop lsto close the current logfile

 optimality o set/show optimality criterion; requires a

 subcommand

 set os overview of settings that relate to the optimality

 criterion; has optional subcommands

 deviation osd set/show allowed deviation from optimality in tree

 searches and tree buffer cleaning

 searchmode oss set/show search mode: look for best (=, default)

anagallis version 1.02a (27 May 2020) documentation - 4/65

 or worst (-) trees

 program p quit the program or set/show general settings;

 requires a subcommand

 quit pq quit the program

 set ps overview of general settings; has optional

 subcommands

 context psc set/show if context-sensitive help (command '>')

 is available from the command line (=) or not (-,

 default)

 longlists psl set/show if lists of command completions are

 multilevel (=) or not (-, default)

 randomseed psr set/show seed for generator of pseudorandom

 numbers

 shortcommands pss set/show if command abbreviations are allowed (=,

 default) or not (-)

 tntmode pst set/show if TNT mode is on

 unicode psu set/show if tree plotting uses multibyte UTF-8

 characters (=, default) or not (-)

 script s overview of open script files; has optional

 subcommands

 execute se overview of script files that are opened for

 execution; has optional subcommands

 pause sep temporarily suspend execution of current script

 file and get interactive input

 resume ser resume reading from the current script file that

 is open for execution

 start sesta open a script file and start executing its

 commands

 stop sesto close the current script file that is open for

 execution

 record sr name and status of the file that is open for

 recording commands, if there is one; has optional

 subcommands

 pause srp temporarily suspend writing to the current file

 for recording commands

 resume srr resume recording commands to the script file for

 recording

 start srsta open a file for recording commands (append mode by

 default)

 stop srsto close the current file for recording commands

 trees t current number of trees in memory; has optional

 subcommands

 consense tc calculate consensus trees; requires a subcommand

 majority tcm majority rule consensus tree

 strict tcs strict consensus tree

 read trr read trees in parenthetical notation (use command

 'import' to import TNT or nexus trees)

 score tsc list the score of the current data on one or more

 trees

 search tsea search trees; requires a subcommand

 mult tseam do one or more replicates of building a tree and

 swapping it (spr or tbr)

 swap tseas swap trees from the tree buffer (spr or tbr)

 select tsel manipulate trees in the tree buffer; requires a

 subcommand

 best tselb discard suboptimal trees

 delete tseld discard the trees in the specified tree scopes

 keep tselk discard the trees that are outside the specified

 tree scopes

anagallis version 1.02a (27 May 2020) documentation - 5/65

 unique tselu discard duplicate trees

 set tset overview of tree related settings; has optional

 subcommands

 current tsetc set/show the default tree that is for example used

 when showing trees or character optimizations on

 trees

 outgroup tseto set/show terminal(s) to be used as outgroup(s)

 when showing trees

 width tsetw set/show default maximum width of a line when

 plotting trees

 zerocollapse tsetz set/show the rule for collapsing zero-length

 branches

 show tsh show trees; requires a subcommand

 plot tshp plot trees using character graphics

 write tshw write trees in parenthetical notation

TNT mode commands

> only available in TNT mode (command 'program set tntmode =' or 'pst=') and in

imported TNT files (command 'import tnt' or 'it')

 ccode c set/show character settings

 help h show documentation for the commands that are available in

 TNT mode and in imported TNT files

 nstates n set the TNT default datatype

 program p

 set ps

 tntmode pst set/show if TNT mode is on

 quit q leave TNT mode, go back to regular mode

 tread t read trees in parenthetical notation (numbering of

 terminals starts from 0)

 xread x read alphanumeric or dna data (no support for interleaved

 data)

Use 'help topic - topicname' ('ht-topicname') for more information about topic

'topicname' (topicname can be abbreviated).

Use 'help command - commandname' ('hc-commandname') for more information about

regular command 'commandname' (commandname can be abbreviated).

HELP TOPICS

===========

1 Background

--> Subtopics

 background theory bt Basic theory

 background algorithm baa Outline of the main optimization

 algorithm

 background reconstructions br Aggregate and non-aggregate final

 statesets

 background scope bs Scope and limits of the current algorithm

1.1 Basic theory

The basic theory behind the main optimization algorithm in anagallis can be

found in De Laet (2005, 2015; see also De Laet 2017). In these papers it is

argued that the problems with missing characters or inapplicable data (Maddison

1993) disappear when parsimony is not seen as an approach that minimizes

evolutionary changes but as an approach that maximizes homology. These two

anagallis version 1.02a (27 May 2020) documentation - 6/65

points of view are operationally equivalent in the absence of inapplicables, but

that equivalence no longer holds in general with data that contain cases of

inapplicability. This is mainly argued and discussed in the context of the

analysis of unaligned sequence data, but also holds for inapplicables as they

arise in the classic setting of morphological data (De Laet 2005: 110-111; De

Laet 2015: 552-556). With inapplicables in the analysis of unaligned sequence

data, the computational complexity of the optimization of homology on a given

tree makes the use of heuristic approximations unavoidable. With inapplicables

as they arise in morphology, the computational complexity is greatly reduced and

an exact algorithms for the optimal homology score of character hierarchies with

inapplicables become practically feasible. Anagallis is a program that provides

tree evaluation and tree searches with an algorithm that yields exact scores for

basic absence/presence character hierarchies.

The problems with inapplicable data can be exemplified using Maddison's (1993)

well-known reatment of how to deal with tails in a group of terminals where a

tail is either absent or present; and that, when present, can have different

colors, textures, and so on. This can be seen as a character hierarchy with a

more inclusive level of homology (absence or presence of a tail) and a less

inclusive level of homology (tail color when tail is present; tail texture when

tail is present, ...). In general, the less inclusive level can have homology

statements about entire substructures that can be either absent or present, and

each such substructure can in turn be at the root of a subhierarchy, with an

even less inclusive level of homology at which further variability (or lack

thereof) of the substructure is applicable. Further treatment only applies to

empirical data that from a biological point of view can be argued to be properly

conceptualized in such hierarchies.

Maddison's tail color example deserves some important caveats in that respect.

First, color is in general not restricted to tails, and might equally well be

conceptualized as part of one or more hierarchies (such as absence/presence of

particular pigments that require certain precursors to be present, ...) that are

independent from tail hierarchy. Such discussions are important but outside the

scope of how to deal with a character hierarchy once it is accepted that it

constitutes a prior hypothesis that deserves further examination, which is the

focus here. Much depends on the specific group under study. Second, there is

also the implicit assumption that there are good prior reasons to consider tails

in this group of terminals homologous on a prior basis, even if they may differ

in color, texture, and so on. If there would be prior grounds to reject homology

of, for example, red tails and blue tails in this group of terminals, there

would be two independent absence/presence character hierarchies: one for red

tails, another for blue tails. Once again these are important issues but beyond

the scope of this introduction. Related to the first issue is the general

concern is that variability, or better lack thereof, should be treated at the

right morphological level. One could for example choose to include the

observation that the living cells of the observed tails contain ribosomes. While

not wrong by itself, it is of wider applicability and the correct level to

include this observation would be the living cells in the entire organism, not

just in the tails. Without inapplicables (all terminals under study have tails),

this would just be an uninformative character and no harm would be done by

including it, even if coded at the wrong level. As will be clear, that does no

longer hold when inapplicables are present.

Using Sereno's (2007, p. 573) distinction between neomorphic and

transformational characters, the absence/presence of (sub)structures in a given

set of terminals can be represented using neomorphic characters. Further

variability of (sub)structures can be represented using transformational

characters. So the general concept of a basic character hierarchy can be

represented as a hierarchy with a single neomorphic character at its root and

anagallis version 1.02a (27 May 2020) documentation - 7/65

one or more transformational and/or neomorphic characters at each next level.

Each such next level represents a less inclusive level of applicability, and at

each level a special token such as a dash can be used to indicate

inapplicability. This representation provides unambiguous and non-redundant

descriptions of such hierarchies (at least as long no additional constraints are

required; see the section on the Scope and limits of the current algorithm for a

refinement of the basic model discussed here). Discussion of a simple concrete

example (though not in terms of Sereno's terminology) can be found in De Laet

(2015, Fig. 2).

Having a way to unambiguously describe a character hierarchy is one thing, how

to optimize such a hierarchy on a tree another. Maddison (1993) well established

that algorithms that can properly deal with characters that are applicable

throughout a given set of terminals are in general insufficient for that, not

just for often used coding strategies such as contingent coding, but for any way

of coding he could think of (to be sure, he didn't to that in these terms and

only dealt with hierarchies one level deep: a root level such as

absence/presence of a tail; and a lower level describing further aspects of that

structure; but that's what it amounts to). Examples of such algorithms are

Farris' (1970) algorithm for linearly ordered characters, Fitch' (1971)

algorithm for unordered characters, and Sankoff and Rousseau's (1975) step

matrix algorithm. In practice, implementations of these algorithms often allow

the user to treat a dash either as missing data or as an additional character

state, but these are just two different ways to shoehorn inapplicability into

algorithms that are themselves not in general applicable with inapplicable data,

and that were not designed to treat such cases. Maddison described and discussed

a number of cases in which different coding approaches for such algorithms give

results that are hard to defend from a theoretical/biological/logical point of

view. Because he couldn't find any combination of coding approach and algorithm

that that would always give satisfactory results, he concluded that the ultimate

solution would require the development of algorithms that would keep track of

interactions among characters and that would count steps in characters only in

regions of the tree where these characters are applicable (Maddison 1993, p.

580).

Before moving to the development of such algorithms, a fundamental question must

be answered: what is it, from a biological and theoretical point of view, that

one should optimize in such cases? As will be discussed right away, this is so

because the notion of minimization of evolutionary changes or steps, often seen

as the hallmark of parsimony, is fundamentally problematic when inapplicables

are present. Discussions of coding techniques and algorithms for data with

inapplicables in terms of evolutionary steps are therefore just operational

guidelines in search of deeper ground. It is not a coincidence that, in the

absence of a clear answer to the above question, about all papers that deal with

inapplicability in terms of evolutionary steps, including Maddison's, conclude

with practical recommendations that are known to be problematic in some cases

but hoped to give reasonable results under most.

As an answer to this question I have proposed to maximize the number of

independent pairwise homology statements that trees allow given the data at hand

(De Laet 2005). The theoretical basis for this criterion is that it maximizes

agreement between observational data (homology hypotheses as coded in the data

set, ultimately based on observed similarity; see De Laet 2005 p. 83-84 for some

discussion and pointers to the literature when it comes to the notion of

similarity in this context) and explanation (any single tree with uniquely

optimized inner nodes that explains the data by inheritance and common descent,

a crucial notion in parsimony). The requirement that homology statements as

coded in a dataset must be similarity-based ensures that the whole enterprise

has an empirical basis. Given such prior tree-independent hypotheses of

anagallis version 1.02a (27 May 2020) documentation - 8/65

homology, the notion of homology on a given tree has this precise meaning: a

feature that is observed to be shared among a group of terminals and that

constitutes a prior hypothesis of homology can be considered homologous on that

tree if that shared presence can be explained by inheritance and common descent

on that tree; if it cannot be so explained, it is not homologous (Farris 1983,

p. 18; see also Farris 2008). As such, it covers both presence and absence of

structures and substructures (provided that these absences are considered at the

appropriate level; De Laet 2015, p. 551) and further aspects of these structures

and substructures when they are present.

The best trees for a given dataset are then the trees on which the highest

number of independent pairwise similarity-based prior homology statements can be

simultaneously interpreted as homology. Maximization is over independent

pairwise such homology statements because these constitute the units of

comparative content of a dataset (De Laet 2005, p. 89-91). When no inapplicables

are present, this reduces to Farris's (1983) rationale for parsimony analysis

(see e.g. De Laet 2015, p. 553). With inapplicables, it can be seen as an

extension of that rationale that covers such cases as well, an extension in

which the problems that Maddison (1993) described disappear (De Laet 2005, p.

110).

The difference between parsimony as an approach that minimizes evolutionary

changes/events/transformations and parsimony as an approach that maximizes

homology can be illustrated by example. Consider a clade with two deeply nested

sister species that share an insert of 30 nucleotides that is not present in any

other species in that clade. The inserted sequence is largely conserved but two

base transformations have occurred nevertheless. Minimizing evolutionary

changes, the shared presence of that insert cannot be considered a synapomorphy

that unites these two species. This is so because a single insert of length 30

in the common ancestor of these sister species (which would constitute the

synapomorphy that unites these species) followed by two base transformations

amounts to three evolutionary events. If it is evolutionary events that are to

be minimized, two independent such inserts, along the two terminal branches

leading to these species, each of the exact observed 30 nucleotides, provides a

better explanation (one less evolutionary event: just two insertions, no base

transformations). So considering the insert as a synapomorphy that unites both

species is suboptimal when just minimizing evolutionary events, even if it can

explain why 28 out of these 30 bases are identical between the two species, a

series of empirical observations that the 'optimal' solution of two independent

inserts cannot explain. Similar examplesi but in the context of unaligned

sequence data are discussed on pp. 111-114 of De Laet (2005). An example in the

context of morphological data can be found in De Laet (2015, Fig. 2). Each such

example can be 'fixed' by assigning different weights to different events, but

such differential weighting is ad hoc and no general weighting approach seems to

be able to cover all cases.

When it comes to explanation of empirical data, such examples show that

minimization of evolutionary events or transformations in general breaks down

when inapplicables are present. Maximization of homology, on the other hand,

performs well in such examples. Postulating two independent origins of the

sequence in the above example, for example, is way suboptimal from this point of

view: none of the 28 shared presences of a specific base can be explained by

common descent and inheritance, and neither can the shared presence of the

insert of length 30. All these observed shared similarities can be explained as

homology though when a single insert of length 30 in the common ancestor of

these species is postulated.

Once it is accepted that most parsimonious trees are the trees that best explain

empirical data in terms of common descent and inheritance, the question arises

anagallis version 1.02a (27 May 2020) documentation - 9/65

of how to proceed operationally to identify those trees. This is the technical

side of the question of which optimality function to use to evaluate any given

tree, a criterion that can then be optimized in a tree search. With

inapplicables, the evaluation of a given tree itself already involves a

non-trivial optimization: to maximize homology in a character hierarchy on a

given tree, one has to minimize a self-consistent total cost or score on that

tree that has three components (De Laet 2015, pp. 553; see also De Laet 2005:

105-108):

1. gains and losses of (sub)structures where these are applicable;

2. transformations in further characters of these (sub)structures where

 applicable;

3. subcharacters (regions of applicability for (sub)structures and further

 characters that describe them).

That optimal score on a tree is simply called the cost or score of the given

character hierarchy on that tree. It reflects or implies one or more scenarios

of evolutionary change that result in one or more optimal mixes of homology

statements on that tree. Some of these are about absences and presences of

entire (sub)structures and some about states in further characters of

(sub)structures when present. The mix is optimal in the sense that any other

evolutionary scenario will imply that the total amount of observed similarity

that can be explained as homology on that tree will decrease (as just

illustrated by example, the scenarios that lead to such optimal explanations are

not necessarily minimum evolution scenarios). The best trees are then the trees

with the lowest cost thus defined.

A somewhat surprising quantity in the above minimization is the number of

subcharacters or regions in a tree where a character is applicable.

Subcharacters have no biological meaning by themselves, they are just a quantity

that pops up when deriving an expression for the amount of similarity that can

be explained as homology on a given tree. Keeping track of numbers of

subcharacters for all characters that are part of a character hierarchy is a

major part of what the main optimization algorithm in anagallis does.

The notion of self-consistency here means that the overall explanation of the

observed data must be free of internal contradictions. As pointed out by

Maddison, it boils down to keeping track of interactions between the characters

that are logically related. That's a second major job that the optimization in

anagallis does. This is also a main difference with the algorithm of Brazeau et

al. (2017). Theirs is, for reasons of computational simplicity, by design a

single-character algorithm. So by definition it cannot guarantee overall

internal consistency across entire character hierarchies.

The minimization that has to be performed on any given tree is a real

co-minimization. Whenever evaluating a given tree for a given character

hierarchy, it is for example not sufficient to first optimize gains and losses

at the root level of that hierarchy and to use the regions of applicability thus

defined as fixed constraints to count gains/losses, transformations and

subcharacters at less inclusive levels. The best overall solutions for the

hierarchy as a whole may well require optimizations of gains and losses at the

root level of the hierarchy that, considered in isolation, are suboptimal.

The program provides a flexible way to define hierarchic relationships among the

columns of a conventional dataset, using parenthetical notation with angle

brackets. The syntax is such that the first character following an opening

bracket is an absence/presence character that determines (in)applicability at

less inclusive levels. Next follow simple nested characters or nested

subhierarchies. There is no restriction on the number of nested levels or on the

anagallis version 1.02a (27 May 2020) documentation - 10/65

number of characters or subhierarchies at any level.

The absence/presence characters at any level are referred to as root characters

because they are at the root of a (sub)hierarchy. The root character of the

complete hierarchy is called the main or global root character of the hierarchy.

Within each level, the characters that follow the root character are called the

(directly) subordinate characters at that level. These include root characters

of one level down: a root character of a nested level is a (directly)

subordinate character one level up. Such nested root characters are called

complex subordinate characters (as opposed to simple subordinate characters).

As an example,

 <1 5 6 <7 8>>

is a character hierarchy with main root character 1. Characters 5, 6 are simple

subordinate characters at that level. Character 7 is a complex subordinate

character at that level. It is the root character of a subhierarchy that has

character 8 as a simple directly subordinate character.

Once a hierarchy is defined, subsequent tree optimizations and tree searches

will take these relationships into account and provide scores according to the

above criterion.

1.2 Outline of the main optimization algorithm

--

So to find the score of a character hierarchy on a tree such that homology is

maximized, one has minimize the self-consistent total cost that is the sum of

these three components:

1. gains and losses of (sub)structures where these are applicable;

2. transformations in further characters of these (sub)structures where

 applicable;

3. subcharacters (regions of applicability for (sub)structures and further

 characters that describe them).

This section provides an outline of the algorithm to calculate that score for

character hierarchies with equally weighed characters (weighting factor 1) as

currently implemented. The program allows different characters of a character

hierarchy to be differentially weighted using user-specified weights. Such

weighted scores are obtained by applying these weights to the scores of the

individual characters of a hierarchy.

The main root character of a properly defined character hierarchy is by

definition applicable in all terminals, so in any optimal solution it will be

applicable in all inner nodes as well (if not, the score can be improved,

leading to a contradiction). So the search can be constrained to solutions where

the main root character is in a single subcharacter. The algorithm starts with a

preliminary full (downpass and uppass) and unconstrained Fitch optimization of

the root absence/presence character on that tree (under the given conditions,

unconstrained Fitch optimization always results in a single subcharacter).

Fitch optimization of an absence/presence character can result in final

statesets that include both absence and presence. If that is the case, the

algorithm preliminary resolves these ambiguities as absence (this does not

affect the calculated cost). This results in a number of inner nodes that are

reconstructed as absence and a number of nodes that are reconstructed as

presence, thus defining initial or preliminary current regions of absence and

anagallis version 1.02a (27 May 2020) documentation - 11/65

initial or preliminary current regions of presence on the given tree. The nodes

that are reconstructed as presence at this point will be reconstructed as

presence in any optimal solution for the hierarchy as whole (it can be shown

that the cost of the full hierarchy will increase if any combination of these

nodes is switched to absence). For nodes that are reconstructed as absence at

this point this only holds in initial regions of absence that are bounded by at

most one neighbouring region of presence. In initial regions of absence that are

bounded by more than one region of presence, some or all nodes may have to be

switched to presence in order to obtain the optimal score for the full

hierarchy. Optimal re-assignments to presence in such initial regions of absence

can be calculated one region at a time (I was too harsh on my algorithm in the

documentation of v1.01 when it came to this, high time to get that paper

done...). In other words, there are no interactions between different such

current preliminary regions of absence for this optimization problem.

The optimal reassignments within any given preliminary region of absence, if

any, are determined as follows. First, calculate the preliminary cost of the

full hierarchy under the current constraints (the root character as preliminary

optimized at this point; this includes optimal re-assignments in preliminary

regions of absence that have already been looked at). Use this score to

initialize the current best global score in the search that follows. That search

is through the possible set of unit switches in the current region that have the

potential to improve the current best global score. In this, a unit switch is

defined as a subset of nodes of the current region that are switched from

absence to presence (the initial situation corresponds to the empty unit switch;

the nodes that are not switched are the complement of the unit switch, so the

unit switch fully defines the assignments in the region). Those unit switches

that yield the best improvements of the current best score will determine the

final statesets in the current preliminary region of absence. To find the

optimal score, it is sufficient to consider just one optimal unit switch in the

current region of absence (and to effectively perform its re-assignments) before

moving to the next such region. In that way, the current best cost after all

initial regions of absence have been optimized in this way is the optimal cost

of the full hierarchy on the given tree.

Here are some details about the search space in any preliminary region of

absence. Consider a unit switch and assume that there is at least one switched

node that does not have at least two neighbouring nodes that have also been

switched or that belong to neighbouring regions of presence. It can be shown

that the derived unit switch in which that node is not switched will have a

better score. This procedure of switching such nodes back can be repeated until

al switched nodes have at least two neighbouring nodes that have also been

switched or that belong to neighbouring nodes of presence (including the case

where no switched nodes remain). This final derived switch is a unit switch for

which the following holds: for each switched node, there exists a path through

the original region of absence that connects two neighbouring regions of

presence such that all nodes on that path have been switched (a neighbouring

region of presence for a given region of absence is a region of presence that is

connected to that region of presence by a single edge). To find all optimal unit

switches, it is then sufficient to search through the set of unit switches that

have this property (note that, as a corollary, any such unit switch can increase

the number of regions of absence and will decrease the number of regions of

presence). For ease of further discussion, unit switches with this property are

called proper unit switches. This still amounts to a search space that grows

more than linearly with the number of neighbouring regions of presence. This

explains why the program in general takes measurably more time to optimize

random trees than it takes to optimize optimal or near-optimal trees. Some

remarks on how the set of relevant unit switches is generated in the current

implementation follow later in this section.

anagallis version 1.02a (27 May 2020) documentation - 12/65

The cost of the full hierarchy under the current constraints is the sum of the

current cost of the main root character, the costs of its simple subordinate

characters, and the costs of the subhierarchies that start at its complex

subordinate characters.

The current cost of the main root character is the sum of its number of

subcharacters (always equal to one for a main root character) plus the cost of

its initial Fitch optimization as adapted to reflect unit switches that may

already have been performed. The current preliminary optimization of this main

root character implies one or more preliminary regions of applicability or

subcharacters for its directly subordinate characters, both simple and complex.

The score of a simple subordinate character is the sum of that number of

subcharacters and the number of transformations in that subordinate character

within those subcharacters. Depending on user-specified settings for the

character, the number of transformations in a subcharacter is obtained as the

regular Fitch cost or as the regular Farris cost within that subcharacter. In

practice, the total number of transformations within all subcharacters can be

obtained by a traditional downpass that is modified to detect boundaries of

subcharacters (similar and somewhat more elaborate modifications are required in

the uppass when, in a later stage, all optimal statesets are calculated).

The cost of a subhierarchy that starts at a complex subordinate character is

calculated in the same way as the cost of the full hierarchy but with the added

twist that the root character of a subhierarchy can have more than one

subcharacter, a dynamic constraint from one level up in the hierarchy. So the

full Fitch optimization of the root character of a subhierarchy, the first step

in such calculations, has to be performed within each of those subcharacters.

To check if a given unit switch in a given region of absence as implied by a

preliminary optimization of a root character improves the score of the

(sub)hierarchy that starts at that root character, the current implementation

does a complete re-optimization of that (sub)hierarchy. It could re-use the

previous calculations outside the given region of absence, but that algorithmic

optimization is not programmed yet.

The following paragraphs provide some notes on the procedure used to generate

the set of unit switches that have to be checked in a given region of absence.

As discussed, these are all unit switches for which the following holds: for

each switched node, there exists a path through the original region of absence

that connects two neighbouring regions of presence such that all nodes on that

path have been switched. This property can be used to generate that set, an

approach that is followed in the current implementation of the algorithm.

Given a region of absence and its neighbouring regions of presence as currently

optimized, consider a set of non-singleton and non-intersecting subsets of

neighbouring regions of presence. For each such subset, change the preliminary

assignments (from absence to presence) in the region of absence for all nodes

that are on the path between any two members of that subset (for any set of

subsets, that can be done in a single downpass through that region). By

generating and examining all sets of non-singleton and non-intersecting subsets

of neighbouring regions of presence, it is guaranteed that each relevant unit

switch will be generated at least once. The drawback of this approach is that

some unit switches can be generated more than once because different sets of

subsets can result in the same unit switch. The current implementation therefore

checks some rules to identify sets of subsets that can be skipped because there

exists a set of subsets that will not be skipped and that results in the same

unit switch.

anagallis version 1.02a (27 May 2020) documentation - 13/65

In the current implementation of the algorithm, all possible sets of

non-singleton and non-intersecting subsets of neighbouring regions of presence

up to a cardinality of five are checked, the smallest number that suffices to

guarantee that each relevant unit switch will be generated at least once as long

as no more than eleven neighbouring regions of presence are involved during any

stage of the optimization of any of its absence/presence characters. This

condition is certainly met when no unconstrained Fitch optimization of an

absence/presence character has such a region, an overly strict condition that is

easily checked a posteriori. With more than eleven neighbouring regions of

presence, an unlikely situation for empirical datasets on optimal or

near-optimal trees, there may be optimal solutions that that can only be found

with sets of subsets that have a cardinality higher than five. When this is the

case, the current implementation can be considered to provide a heuristic

approximation, even in the absence of interactions between different initial

regions of absence: reconstructed statesets at inner nodes and reported scores

may be optimal, but there is no guarantee. Whenever this happens during tree

search or tree evaluation, it is flagged in the output.

1.3 Aggregate and non-aggregate final statesets

At the point where the algorithm identifies a single optimal solution for a

given character hierarchy on a given tree, each initial region of absence of the

main root character of that hierarchy reflects a single unit switch. In

combination with the initial regions of presence, these unit switches amount to

an optimal reconstruction of the main root character. This reconstruction

defines current sets of subcharacters or regions of applicability for the

subordinate characters, both simple and complex.

Within each current subcharacter of a simple subordinate character, final

statesets can initially be calculated in the same way as done for characters

outside character hierarchies. Some additional steps are then required to detect

and properly deal with boundaries between regions of applicability

(subcharacters) and regions of inapplicability, but these do not affect the

logic of calculating the final statesets themselves.

A complex subordinate character is by definition the root character of a

subhierarchy. Within each current subcharacter of such a subordinate root

character, the subhierarchy that starts there has the same recursive structure,

including inner node state reconstructions, as the hierarchy as a whole. There's

just the additional twist that the reconstruction of the subordinate root

character requires some extra steps to detect and properly deal with boundaries

between regions of applicability and regions of inapplicability. These are not

explicitly required at the outer level because there are no regions of

inapplicability at that level.

For each character of the hierarchy, the inner node reconstructions at that

point in the algorithm are called the non-aggregate (final) statesets. With

multiple global solutions of a character hierarchy, there are one or more inner

nodes where multiple non-aggregate statesets exist for one or more characters.

The union of all these for a given character at a node yield the aggregate

(final) stateset for that character at that node. Calculation of zero-length

branches is currently done on the basis of such aggregate statesets.

Below, the difference between aggregate and non-aggregate statesets is

illustrated with some examples of increasing complexity. The first three

consists of a dataset that contains a character hierarchy, and such that there

is just a single most parsimonious tree under equal weights. Lines with output

of the program (non-aggregate and aggregate statesets on the optimal tree) are

anagallis version 1.02a (27 May 2020) documentation - 14/65

slightly indented and marked with '>' (for lines that would wrap, some manual

editing has been added to maintain a clear layout). Final statesets are plotted

using command characters diagnose plot (cdp), a command that by default plots

aggregate statesets. Plots of non-aggregate statesets are obtained by adding

option 'u'. The final example just contains anagallis statements to read a

dataset, read a character hierarchy, read four trees, and generate non-aggregate

and aggregate statesets for the hierarchy on those trees. When executed, the

output contains some more complex examples of the visualization problems that

can arise when plotting non-aggregate statesets.

Example 1

This is a simple example of a character hierarchy that has more than one

optimization on a tree.

Data set:

 out 00000 11

 A 10000 11

 B 11000 11

 C 11100 0-

 D 11111 0-

 E 11111 12

 character hierarchy <6 7>

Optimal tree:

 ┌─ A

 ├─ out

 └──┬─ B

 └──┬─ C

 └──┬─ D

 └─ E

Below are the non-aggregate statesets for the character hierarchy on the the

most parsimonious tree. As pointed out in the output, the subordinate character

is shown first. It includes the number of subcharacters and transformations for

that character on that plot. The optimization of the root character that

provides the proper context for that nested optimization follows. This one

includes the number of subcharacters and gains/losses. There are two different

global solutions, so this simple hierarchy of optimizations is shown twice.

 >* non-aggregate final statesets for character hierarchy <6 7> on tree 1

 > selected characters: all

 >

 > the optimization is presented depth first

 > at each level, the local context for the optimization of the nested level

 > is provided by the optimization of the parent level that follows

 >

 > + non-aggregate statesets for simple subordinate character 7 on tree 1

 > local optimization

 > 2 subcharacters, 0 transformations

 > ┌─[1] out

 > └─[1]─┬─[1] A

 > └─[1]─┬─[1] B

 > └─[-]─┬─[-] C

 > └─[-]─┬─[-] D

 > └─[2] E

anagallis version 1.02a (27 May 2020) documentation - 15/65

 > + non-aggregate statesets for main root character 6 on tree 1

 > optimization 1 of 2

 > 1 subcharacter, 2 gains/losses

 > ┌─[1] out

 > └─[1]─┬─[1] A

 > └─[1]─┬─[1] B

 > └─[0]─┬─[0] C

 > └─[0]─┬─[0] D

 > └─[1] E

 > __

 >

 >

 > + non-aggregate statesets for simple subordinate character 7 on tree 1

 > local optimization

 > 1 subcharacter, 1 transformation

 > ┌─[1] out

 > └─[1]─┬─[1] A

 > └─[1]─┬─[1] B

 > └─[12]─┬─[-] C

 > └─[12]─┬─[-] D

 > └─[2] E

 >

 > + non-aggregate statesets for main root character 6 on tree 1

 > optimization 2 of 2

 > 1 subcharacter, 2 gains/losses

 > ┌─[1] out

 > └─[1]─┬─[1] A

 > └─[1]─┬─[1] B

 > └─[1]─┬─[0] C

 > └─[1]─┬─[0] D

 > └─[1] E

The second plot of the subordinate character contains an example of the special

provisions that may be required along the boundaries between a region of

applicability and its neighbouring regions of inapplicability. In this case

there is one region of applicability and two neighbouring regions of

inapplicability (leaf node C and leaf node D). These two neighbouring regions of

inapplicability connect to two nodes of the region of inapplicability that are

directly connected themselves. The net effect is that the required

transformation between state 1 to state 2 in the region of applicability cannot

be pinpointed to a single branch in that region, resulting in an ambiguous

reconstruction in the two inner nodes near that boundary. This, in turn, has

consequences for the detection and collapsing of zero-length branches (see

command 'trees set zerocollapse').

The corresponding aggregate statesets are given below. The non-aggregate

statesets on which each of these plots is based have in general different

numbers of subcharacters and transformations or gains/losses. No attempt is made

to summarize the possible ranges of these numbers in these plots.

 >* aggregate final statesets for character hierarchy <6 7> on tree 1

 > selected characters: all

 >

 > + aggregate statesets for simple subordinate character 7 on tree 1

anagallis version 1.02a (27 May 2020) documentation - 16/65

 > ┌─[1] out

 > └─[1]─┬─[1] A

 > └─[1]─┬─[1] B

 > └─[12-]─┬─[-] C

 > └─[12-]─┬─[-] D

 > └─[2] E

 > + aggregate statesets for main root character 6 on tree 1

 > ┌─[1] out

 > └─[1]─┬─[1] A

 > └─[1]─┬─[1] B

 > └─[01]─┬─[0] C

 > └─[01]─┬─[0] D

 > └─[1] E

Example 2

This is an example where the root character has two initial regions of absence

that are optimized independently. In general, each initial region of absence for

a root character can have multiple optimizations of the subhierarchy that starts

at that root character. To evade the combinatorial explosion that would follow

from showing every possible combination of optimizations in these regions, these

optimizations are shown one region at a time, using the '+' character as a

placeholder for the possible optimizations in the other regions. The drawback is

that the plots can no longer be accompanied by their numbers of subcharacters

and transformations or gains/losses because these numbers depend on specific

values for the placeholder. For regions that have only a single optimization,

such as region two in this example, that optimization could be directly plugged

in into the plots for the other regions, making the presentation of the results

less complex. That algorithmic refinement is not available in this version.

Data set:

 out 0000000000 11

 A 1000000000 11

 B 1100000000 11

 C 1110000000 0-

 D 1111100000 0-

 E 1111100000 12

 F 0000010000 11

 G 0000011000 11

 H 0000011100 0-

 I 0000011111 0-

 J 0000011111 11

 character hierarchy <11 12>

Optimal tree:

 ┌─ out

 ├──┬─ A

 │ └──┬─ B

 │ └──┬─ C

 │ └──┬─ D

 │ └─ E

 └──┬─ F

 └──┬─ G

 └──┬─ H

 └──┬─ I

 └─ J

anagallis version 1.02a (27 May 2020) documentation - 17/65

Below are the non-aggregate statesets for the character hierarchy on the the

most parsimonious tree.

 >* non-aggregate final statesets for character hierarchy <11 12> on tree 1

 > selected characters: all

 >

 > the optimization is presented depth first

 > at each level, the local context for the optimization of the nested level

 > is provided by the optimization of the parent level that follows

 >

 > + non-aggregate statesets for simple subordinate character 12 on tree 1

 > local optimization

 > '+': placeholder in region(s) as defined at level 1 of the hierarchy

 > valid values are nested under the optimizations at that level

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─[-]─┬─[-] C

 > │ └─[-]─┬─[-] D

 > │ └─[2] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─{+}─┬─[-] H

 > └─{+}─┬─[-] I

 > └─[1] J

 >

 > + non-aggregate statesets for main root character 11 on tree 1

 > there are 2 regions that are optimized independently using the

 > final optimal statesets at the borders of these regions as plotted below

 >

 > such regions may have multiple non-trivial non-aggregate final statesets

 > these statesets are therefore plotted separately for each such region

 > '+' serves as a placeholder for optimizations in the other regions

 >

 > the regions are defined in the first plot that follows

 > nodes that are not labelled in that definition are outside

 > such regions and have the same optimization in all following plots

 >

 > ┌─ out

 > └──┬──┬─ A

 > │ └──┬─ B

 > │ └─1─┬─ C

 > │ └─1─┬─ D

 > │ └─ E

 > └──┬─ F

 > └──┬─ G

 > └─2─┬─ H

 > └─2─┬─ I

 > └─ J

 >

 > character 11, region 1: optimization 1 of 2

 > '+': placeholder in other region(s) as defined at this level (1)

anagallis version 1.02a (27 May 2020) documentation - 18/65

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─[0]─┬─[0] C

 > │ └─[0]─┬─[0] D

 > │ └─[1] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─{+}─┬─[0] H

 > └─{+}─┬─[0] I

 > └─[1] J

 > __

 >

 >

 > + non-aggregate statesets for simple subordinate character 12 on tree 1

 > local optimization

 > '+': placeholder in region(s) as defined at level 1 of the hierarchy

 > valid values are nested under the optimizations at that level

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─[12]─┬─[-] C

 > │ └─[12]─┬─[-] D

 > │ └─[2] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─{+}─┬─[-] H

 > └─{+}─┬─[-] I

 > └─[1] J

 >

 > + non-aggregate statesets for main root character 11 on tree 1

 > character 11, region 1: optimization 2 of 2

 > '+': placeholder in other region(s) as defined at this level (1)

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─[1]─┬─[0] C

 > │ └─[1]─┬─[0] D

 > │ └─[1] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─{+}─┬─[0] H

 > └─{+}─┬─[0] I

 > └─[1] J

 > __

 >

 >

 > + non-aggregate statesets for simple subordinate character 12 on tree 1

 > local optimization

 > '+': placeholder in region(s) as defined at level 1 of the hierarchy

 > valid values are nested under the optimizations at that level

anagallis version 1.02a (27 May 2020) documentation - 19/65

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─{+}─┬─[-] C

 > │ └─{+}─┬─[-] D

 > │ └─[2] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[1]─┬─[-] H

 > └─[1]─┬─[-] I

 > └─[1] J

 > + non-aggregate statesets for main root character 11 on tree 1

 > character 11, region 2: optimization 1 of 1

 > '+': placeholder in other region(s) as defined at this level (1)

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─{+}─┬─[0] C

 > │ └─{+}─┬─[0] D

 > │ └─[1] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[1]─┬─[0] H

 > └─[1]─┬─[0] I

 > └─[1] J

The aggregate statesets for this example are plotted below. By design, they do

not suffer from the combinatorial explosion that follows when some characters

have multiple initial regions of absence, and no special provisions are required

to deal with that situation when plotting the statesets. The drawback is that

the statesets themselves may be harder to intuit.

 >* aggregate final statesets for character hierarchy <11 12> on tree 1

 > selected characters: all

 >

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─[12-]─┬─[-] C

 > │ └─[12-]─┬─[-] D

 > │ └─[2] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[1]─┬─[-] H

 > └─[1]─┬─[-] I

 > └─[1] J

 > + aggregate statesets for main root character 11 on tree 1

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─[01]─┬─[0] C

 > │ └─[01]─┬─[0] D

 > │ └─[1] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[1]─┬─[0] H

 > └─[1]─┬─[0] I

 > └─[1] J

anagallis version 1.02a (27 May 2020) documentation - 20/65

Example 3

This example is included to illustrate that subordinate root characters also may

require some extra steps to detect and properly deal with boundaries between a

region of inapplicability and its neighbouring regions of inapplicability when

plotting statesets. During the search for the optimal cost, the non-aggregate

statesets for a subordinate root character are uniquely determined in its

subcharacters: any inner node in these subcharacters has been assigned either

absence or presence. This is sufficient to find the optimal cost, but some

implied gains/losses that are assigned to single branches in this way may

actually occur along a series of branches near boundaries with regions of

inapplicability. This is the case in the second and the fourth plot of the

non-aggregate statesets for subordinate root character 12 in this example. The

net effect is, just as it was the case for a non-root character as illustrated

above, an ambiguous reconstruction in some inner nodes. There is the additional

complexity though that, in this case, the ambiguity has to extend down into the

subhierarchy that starts at that root character (the non-aggregate statesets in

the subordinate characters at the nodes involved are then something like

'semi-aggregate statesets'). This is illustrated in the second and fourth plot

of the non-aggregate statesets for simple subordinate character 13.

Data set:

 Out 0000000000 111

 A 1000000000 111

 B 1100000000 110

 C 1110000000 0--

 D 1111100000 0--

 E 1111100000 10-

 F 0000010000 111

 G 0000011000 111

 H 0000011100 0--

 I 0000011111 0--

 J 0000011111 10-

 character hierarchy <11 <12 13>>

Optimal tree:

 ┌─ out

 ├──┬─ A

 │ └──┬─ B

 │ └──┬─ C

 │ └──┬─ D

 │ └─ E

 └──┬─ F

 └──┬─ G

 └──┬─ H

 └──┬─ I

 └─ J

Here are the non-aggregate statesets on the optimal tree:

 >* non-aggregate final statesets for character hierarchy <11 <12 13>>

 on tree 1

 > selected characters: all

 >

 > the optimization is presented depth first

 > at each level, the local context for the optimization of the nested level

anagallis version 1.02a (27 May 2020) documentation - 21/65

 > is provided by the optimization of the parent level that follows

 >

 > + non-aggregate statesets for simple subordinate character 13

 on tree 1

 > local optimization

 > '+': placeholder in region(s) as defined at level 1

 of the hierarchy

 > valid values are nested under the optimizations at that level

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[01]─┬─[0] B

 > │ └─[-]─┬─[-] C

 > │ └─[-]─┬─[-] D

 > │ └─[-] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─{+}─┬─[-] H

 > └─{+}─┬─[-] I

 > └─[-] J

 > + non-aggregate final statesets for subordinate root character 12

 on tree 1

 > local optimization 1 of 1

 > '+': placeholder in region(s) as defined at level 1 of the hierarchy

 > valid values are nested under the optimizations at that level

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─[-]─┬─[-] C

 > │ └─[-]─┬─[-] D

 > │ └─[0] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─{+}─┬─[-] H

 > └─{+}─┬─[-] I

 > └─[0] J

 >

 > + non-aggregate statesets for main root character 11 on tree 1

 > there are 2 regions that are optimized independently using the

 > final optimal statesets at the borders of these regions as plotted below

 >

 > such regions may have multiple non-trivial non-aggregate final statesets

 > these statesets are therefore plotted separately for each such region

 > '+' serves as a placeholder for optimizations in the other regions

 >

 > the regions are defined in the first plot that follows

 > nodes that are not labelled in that definition are outside

 > such regions and have the same optimization in all following plots

 >

 > ┌─ out

 > └──┬──┬─ A

 > │ └──┬─ B

 > │ └─1─┬─ C

 > │ └─1─┬─ D

 > │ └─ E

 > └──┬─ F

 > └──┬─ G

 > └─2─┬─ H

 > └─2─┬─ I

 > └─ J

anagallis version 1.02a (27 May 2020) documentation - 22/65

 > character 11, region 1: optimization 1 of 2

 > '+': placeholder in other region(s) as defined at this level (1)

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─[0]─┬─[0] C

 > │ └─[0]─┬─[0] D

 > │ └─[1] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─{+}─┬─[0] H

 > └─{+}─┬─[0] I

 > └─[1] J

 > __

 >

 >

 > + non-aggregate statesets for simple subordinate character 13

 on tree 1

 > local optimization

 > '+': placeholder in region(s) as defined at level 1

 of the hierarchy

 > valid values are nested under the optimizations at that level

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[01]─┬─[0] B

 > │ └─[01-]─┬─[-] C

 > │ └─[01-]─┬─[-] D

 > │ └─[-] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─{+}─┬─[-] H

 > └─{+}─┬─[-] I

 > └─[-] J

 >

 > + non-aggregate final statesets for subordinate root character 12

 on tree 1

 > local optimization 1 of 1

 > '+': placeholder in region(s) as defined at level 1 of the hierarchy

 > valid values are nested under the optimizations at that level

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─[01]─┬─[-] C

 > │ └─[01]─┬─[-] D

 > │ └─[0] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─{+}─┬─[-] H

 > └─{+}─┬─[-] I

 > └─[0] J

 >

 > + non-aggregate statesets for main root character 11 on tree 1

 > character 11, region 1: optimization 2 of 2

 > '+': placeholder in other region(s) as defined at this level (1)

anagallis version 1.02a (27 May 2020) documentation - 23/65

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─[1]─┬─[0] C

 > │ └─[1]─┬─[0] D

 > │ └─[1] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─{+}─┬─[0] H

 > └─{+}─┬─[0] I

 > └─[1] J

 > __

 >

 >

 > + non-aggregate statesets for simple subordinate character 13

 on tree 1

 > local optimization

 > '+': placeholder in region(s) as defined at level 1

 of the hierarchy

 > valid values are nested under the optimizations at that level

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[01]─┬─[0] B

 > │ └─{+}─┬─[-] C

 > │ └─{+}─┬─[-] D

 > │ └─[-] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[-]─┬─[-] H

 > └─[-]─┬─[-] I

 > └─[-] J

 >

 > + non-aggregate final statesets for subordinate root character 12

 on tree 1

 > local optimization 1 of 1

 > '+': placeholder in region(s) as defined at level 1 of the hierarchy

 > valid values are nested under the optimizations at that level

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─{+}─┬─[-] C

 > │ └─{+}─┬─[-] D

 > │ └─[0] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[-]─┬─[-] H

 > └─[-]─┬─[-] I

 > └─[0] J

 >

 > + non-aggregate statesets for main root character 11 on tree 1

 > character 11, region 2: optimization 1 of 2

 > '+': placeholder in other region(s) as defined at this level (1)

anagallis version 1.02a (27 May 2020) documentation - 24/65

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─{+}─┬─[0] C

 > │ └─{+}─┬─[0] D

 > │ └─[1] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[0]─┬─[0] H

 > └─[0]─┬─[0] I

 > └─[1] J

 > __

 >

 >

 > + non-aggregate statesets for simple subordinate character 13

 on tree 1

 > local optimization

 > '+': placeholder in region(s) as defined at level 1i

 of the hierarchy

 > valid values are nested under the optimizations at that level

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[01]─┬─[0] B

 > │ └─{+}─┬─[-] C

 > │ └─{+}─┬─[-] D

 > │ └─[-] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[1-]─┬─[-] H

 > └─[1-]─┬─[-] I

 > └─[-] J

 >

 > + non-aggregate final statesets for subordinate root character 12

 on tree 1

 > local optimization 1 of 1

 > '+': placeholder in region(s) as defined at level 1 of the hierarchy

 > valid values are nested under the optimizations at that level

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─{+}─┬─[-] C

 > │ └─{+}─┬─[-] D

 > │ └─[0] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[01]─┬─[-] H

 > └─[01]─┬─[-] I

 > └─[0] J

 >

 > + non-aggregate statesets for main root character 11 on tree 1

 > character 11, region 2: optimization 2 of 2

 > '+': placeholder in other region(s) as defined at this level (1)

anagallis version 1.02a (27 May 2020) documentation - 25/65

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─{+}─┬─[0] C

 > │ └─{+}─┬─[0] D

 > │ └─[1] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[1]─┬─[0] H

 > └─[1]─┬─[0] I

 > └─[1] J

Here are the corresponding aggregate statesets:

 >* aggregate final statesets for character hierarchy <11 <12 13>> on tree 1

 > selected characters: all

 >

 > + aggregate statesets for simple subordinate character 13 on tree 1

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[01]─┬─[0] B

 > │ └─[01-]─┬─[-] C

 > │ └─[01-]─┬─[-] D

 > │ └─[-] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[1-]─┬─[-] H

 > └─[1-]─┬─[-] I

 > └─[-] J

 >

 > + aggregate statesets for subordinate root character 12 on tree 1

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─[01-]─┬─[-] C

 > │ └─[01-]─┬─[-] D

 > │ └─[0] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[01-]─┬─[-] H

 > └─[01-]─┬─[-] I

 > └─[0] J

 >

 > + aggregate statesets for main root character 11 on tree 1

 > ┌─[1] out

 > └─[1]─┬─[1]─┬─[1] A

 > │ └─[1]─┬─[1] B

 > │ └─[01]─┬─[0] C

 > │ └─[01]─┬─[0] D

 > │ └─[1] E

 > └─[1]─┬─[1] F

 > └─[1]─┬─[1] G

 > └─[01]─┬─[0] H

 > └─[01]─┬─[0] I

 > └─[1] J

anagallis version 1.02a (27 May 2020) documentation - 26/65

Example 4

This example just contains an anagallis script. When executed, the output

contains some more complex examples of the vizualization problems that can arise

when plotting non-aggregate statesets, such as placeholders for regions that are

defined at different levels.

 characters read numeric

 'example data to illustrate non-aggregate statesest in character

 hierarchies'

 4 32

 A 0---

 B 1114

 C 1111

 D 1111

 E 1114

 F 0---

 G 0---

 H 0---

 I 10--

 J 10--

 K 10--

 L 10--

 M 0---

 N 0---

 O 1112

 P 1111

 Q 0---

 R 1114

 S 1111

 T 1111

 U 1114

 V 0---

 W 0---

 X 0---

 Y 10--

 Z 10--

 1 10--

 2 10--

 3 0---

 4 0---

 5 1112

 6 1111

 ;

 characters properties set <1 <2 3 4>>;

 trees read

 (1 (10 (((5 31)(28 26))((19 30)(((15 21)((((16 11)27)8)13))((7 (((25

 ((6 17)((14 ((29 9)((4 (((18 20)22)12))23)))24)))32)3))2))))))*

 (1 (((26 ((4 ((((((22 (((3 (((6 5)10)((19 (20 23))(13 15))))(28 ((9

 14)((((32 18)25)11)12))))24))8)16)31)30)17))21))29)(27 (7 2))))*

 (1 (20 ((8 18)(15 ((6 (26 ((((2 (22 24))16)27)7)))((32 (3 ((17 ((21

 (((10 ((5 29)28))25)(30 (11 13))))14))((12 ((31 19)4))9))))23))))))*

 ((((((((4 8)17)26)30)(10 ((2 12)((7 ((31 ((13 29)(((22 24)(((11 15)

 ((32 20)(((16 (14 ((23 28)19)))27)25)))9))21)))5))6))))18)3)1);

 characters diagnose plot u r1 t. bk

 characters diagnose plot r1 t. bk

 characters score .

anagallis version 1.02a (27 May 2020) documentation - 27/65

1.4 Scope and limits of the current algorithm

At any level in a defined character hierarchy, the current algorithm properly

takes into account basic logical dependences of subordination between root

absence/presence characters on the one hand and their subordinate characters

(simple and complex) on the other. But whenever different characters at the same

level in a character hierarchy treat (sub)structures that are homologous at the

parent level, constraints beyond mere hierarchic subordination have to be taken

into account. This is something that anagallis does not yet do.

Consider this example, inspired by Coddington et al.'s (2018) paper on web

evolution in spiders. In a group of spiders being studied, some have no web,

some have a web of a type w1, and some a web of type w2. On prior grounds, web

types w1 and w2 are considered to be homologous as webs (part of a

transformation series) and mutually exclusive. There are also several characters

that describe the web types where applicable: characters w1_1, w1_2 and w1_3 for

web type w1, and character w2_1 for web type for w2. Lastly, both web types have

a substructure ws that may be absent or present and that is thought to evolve

independently of webtype. Characters ws_1 and ws_2 further describe it where

applicable. This could be modelled in this character hierarchy (a/p for

absence/presence):

 <web_a/p <ws_a/p ws_1 ws_2> <w1_a/p a/p w1_1 w1_2 w1_3> <w2_a/p w2_1>>.

This is a technically valid definition of a character hierarchy in anagallis. As

such, reconstructed absence of a web (main root character) implies

inapplicability of the three subordinate root characters, a hierarchic

constraint that is guaranteed to be met.

But in the regions of applicability as defined by the globally best optimization

of web absence/presence, subhierarchies <ws_a/p ws_1 ws_2> <w1_a/p a/p w1_1 w1_2

w1_3> <w2_a/p w2_1> will be independently optimized. That is ok for <ws_a/p ws_1

ws_2> but not for <w1_a/p a/p w1_1 w1_2 w1_3> and <w2_a/p w2_1>. The problem is

that web types w1 and w2 are not independent characters but part of the

transformation series of the structure 'web' that is found at the parent level

of w1_a/p and w2_a/p (see Brazeau 2011 for a good discussion of similar cases in

the context of classic parsimony algorithms). As a result, there is the

additional constraint that all inner nodes in all regions of web presence must

be optimized as either having a web of type w1 or a web of type w2.

Optimizations of such inner nodes where both w1 and w2 are optimized as presence

and optimizations where both w1 and w2 are optimized as absence violate the

assumptions of the analysis. In addition, as absence of for example type w1 in a

region of web presence automatically means presence of another type of web, such

absences cannot be taken into account as independent evidence.

The current algorithm is not designed to treat such cases (see next section for

a generalization to such cases). The above character hierarchy could of course

be analyzed with the program, but then, for the reasons just discussed, a wrong

model of the data is being analyzed and the results should therefore be

interpreted with caution: whether or not presence of w1 and presence of w2 are

mutually exclusive on optimal trees can be verified a posteriori, but those

trees may just be optimal because absence of w1 and absence of w2 has been

counted as independent evidence - which it isn't.

The additional constraints of this example could be included in the definition

of character hierarchies for use in a generalized algorithm by grouping the

relevant parts using, for example, square brackets (not available in the

program):

anagallis version 1.02a (27 May 2020) documentation - 28/65

 <web_a/p <ws_a/p ws_1 ws_2> [<w1_a/p a/p w1_1 w1_2 w1_3> <w2_a/p w2_1>]>.

The meaning of this notation would then be that the structures at the bracketed

level (w1 and w2 types of web in this example) are part of a single

transformation series and hence homologous at the parent level (w1 and w2 webs

are homologous as webs, in this case). Another way to express the same

information (not available either) is by allowing what can be called complex

root characters: root characters that can have several different states of

presence in addition to missing information and inapplicability (absence is

explicitly dealt with at a higher level in the hierarchy):

 <web_a/p <ws_a/p ws_1 ws_2> <webtype_w1_or_w2 w1_1 w1_2 w1_3 w2_1>>.

In this, subhierarchy <webtype_w1_or_w2 w1_1 w1_2 w1_3 w2_1> is a subhierarchy

with complex root character webtype_w1_or_w2. Its states can be '?', '-', 'w1'

or 'w2'. Subordinate characters w1_1, w1_2, and w1_3 are then only applicable

where the state is 'w1', character w2_1 where the state is 'w2'. This second

notation results in a more concise matrices and lends itself better to

algorithmically enforce the additional constraints (see next section).

Even if these two notations differ in the exact matrix that will be constructed

in concrete cases, they are equivalent in terms of data and prior assumptions

that they convey. This is in line with Brazeau's (2011, p. 494) observation that

"matrices and their accompanying character lists should be viewed as formatted

data, and not just a table of observations. That is, they should be constructed

with an understanding of how that information will be interpreted by the

algorithm that is receiving them".

Note that the complication in this particular case arises because there are

additional characters that describe at least one web type when applicable,

resulting in a series of non-independent characters at the same level of a

character hierarchy with the notation that is used. If we had just observed

absence/presence of webs and two different types of web, this can be correctly

coded as as the following simple hierarchy that fully captures all logical

dependences and that is correctly optimized by the current algorithm (it uses a

single character that codes if eiher w1 or w2 has been observed):

 <web_a/p webtype_w1_or_w2>.

Similarly, if we had observed just one web type with several characters that

describe it, there are no multiple characters at the same level about

(sub)structures that are homologous at the parent level either (character

abbreviations as in the first example):

 <w1_a/p <ws_a/p ws_1 ws_2> w1_1 w1_2 w1_3>.

So this case will also be treated correctly in the current version of the

program.

Another example where such additional constraints can pop up and be useful is in

the analysis of aligned sequence data. Consider this dataset of aligned sequence

data:

anagallis version 1.02a (27 May 2020) documentation - 29/65

 A A--A

 B AAGA

 C AAGA

 D AGAA

 E AGAA

 F ATCA

 G ATCA

 H ACTT

 I ACTT

Using square brackets, the subsequence that consists of positions 2-3 can be

modelled as follows:

 c1 subsequence absent(0) present (1)

 c2 purine at first position of subsequence absent (0) present (1)

 c3 purine A at first position of subsequence absent (0) present (1)

 c4 purine G at first position of subsequence absent (0) present (1)

 c5 pyrimidine at first position of subsequence absent (0) present (1)

 c6 pyrimidine C at first position of subsequence absent (0) present (1)

 c7 pyrimidine T at first position of subsequence absent (0) present (1)

 c8 purine at second position of subsequence absent (0) present (1)

 c9 purine A at second position of subsequence absent (0) present (1)

 c10 purine G at second position of subsequence absent (0) present (1)

 c11 pyrimidine at second position of subsequence absent (0) present (1)

 c12 pyrimidine C at second position of subsequence absent (0) present (1)

 c13 pyrimidine T at second position of subsequence absent (0) present (1)

 <c1 [<c2 [c3 c4]> <c5 [c6 c7]>] [<c8 [c9 c10]> <c11 [c12 c13]>]>

 A 0------------

 B 11100--1010--

 C 11100--1010--

 D 11010--1100--

 E 11010--1100--

 F 10--1010--110

 G 10--1010--110

 H 10--1100--101

 H 10--1100--101

Or equivalently, but with complex root characters c2 and c5:

 c1 subsequence absent(0) present (1)

 c2 first position of subsequence purine (R) or pyrimidine (Y)

 c3 first position of subsequence purine A or purine G

 c4 first position of subsequence pyrimidine C or pyrimidine T

 c5 second position of subsequence purine (R) or pyrimidine (Y)

 c6 second position of subsequence purine A or purine G

 c7 second position of subsequence pyrimidine C or pyrimidine T

 <c1 <c2 c3 c4> <c5 c6 c7>>

 A 0------

 B 1RA-RG-

 C 1RA-RG-

 D 1RG-RA-

 E 1RG-RA-

 F 1Y-TY-C

 G 1Y-TY-C

 H 1Y-CY-T

 H 1Y-CY-T

anagallis version 1.02a (27 May 2020) documentation - 30/65

In both cases, the structure at the outer level of the hierarchy (a subsequence

of length 2) consists of two substructures (first and second position 2 of that

subsequence) that make up a sequence of two independent transformation series at

the nested level. With the defined constraints properly enforced, both

representations will non-redundantly extract the phylogenetic signal that is

present in the indel itself and the phylogenetic signal that is present in the

composition of the subsequence that is involved. In this model, the latter is,

in turn, the sum of the phylogenetic signal at the purine/pyrimidine level and

the phylogenetic signal at the level of fully individuated nucleotides. Similar

coding can be applied at different levels of generality. Different codons that

code for the same amino acid, for example, can be modelled in a similar way. So

rather than to have to choose which level of phylogenetic signal to include in

an analysis (see for example Simmons 2017; or, for morphological data,

Torres-Montúfar 2018), this approach, once programmed, will allow to

non-redundantly combine all levels into a single model.

2 Program

--> Subtopics

 program commands pc Command structure

 program treebuffer ptr Tree buffer

 program input pi Input

 program tntmode ptn TNT mode

2.1 Command structure

Commands are not case-sensitive, options are. Options are parsed from left to

right.

Commands are structured in a hierarchy. Take command 'trees'. By itself, it just

gives the number of trees in the tree buffer. In addition it has a number of

subordinate commands to do all kinds of things with these trees. Command 'trees

select', for example, can be used to manipulate trees in the tree buffer. It

does nothing by itself, but requires a further subcommand. Examples are 'trees

select best' to select all optimal trees, or 'trees select unique' to remove

duplicate trees from the tree buffer. Likewise, 'trees search', the command to

search for trees, requires a further subcommand (trees search mult or trees

search swap). Command 'trees set', as a last example, can be used to set a

number of properties related to trees, or to show the current values of those

settings. By itself, it lists all tree-related settings. With additional

subcommands, those different settings can either be set or displayed

individually. 'Trees set collapse', for example sets or displays the way in

which zero-length branches are treated. Or 'trees set width' sets the maximum

width (in characters) that is used when trees are displayed using character

graphics (trees that are wider are chopped into fitting pieces).

'help summary' (hs) gives an overview of the full command hierarchy. For

multilevel commands, unambiguous abbreviations for the different levels do not

require white space in between the different levels. Ambiguous abbreviations can

be disambiguated by lengthening the abbreviation or by inserting white space (or

in some cases even by shortening the abbreviation). 'Program quit', for example,

can also be entered as 'p q' or as 'pq'. This leads to some subtleties when it

comes to determining the shortest unambiguous abbreviation for a multi-level

command. The numeric code for the shortest unambiguous abbreviations of, say, a

two-level command is of the following form: 'i[.+]j': an integer i followed by

anagallis version 1.02a (27 May 2020) documentation - 31/65

one of the characters ' ', '.', or '+', followed by an integer j. The first

integer indicates the number of characters that are required for the top-level

command, the second for the subcommand. When the character in between is ' ',

then a shortest unambiguous abbreviation exists that has a space in between the

abbreviations of the two levels (but there might be an alternative equally short

unambiguous abbreviation without a space and with an additional character from

the top-level command). When the character is a '+', the shortest unambiguous

abbreviation of the full command consists of the direct juxtaposition of the

indicated abbreviations for the top-level command and the subcommand (without a

blank in between); in addition, no ambiguities will arise if longer chunks are

used. When the character is a '.', the shortest unambiguous abbreviation of the

full command still consists of the direct juxtaposition of the indicated

abbreviations for the top-level command and the subcommand, but ambiguities will

arise for some larger chunks of the top-level command.

It can happen that there are multiple shortest abbreviations. In those cases,

and when not using numeric codes, the abbreviation shown is always the one that

does not contain spaces.

No blanks are required to separate commands from their options or to separate

different options.

Filenames are case-sensitive or not depending on the underlying operating system

(Linux only right now, so filenames are case-sensitive). Filenames are not

allowed to contain blanks, irrespective of the underlying operating system.

White space is used to separate a filename argument from subsequent options.

Likewise, names of terminals are not allowed to contain blanks (white space is

currently used to separate a terminal name from character data when reading data

matrices). Names of terminals are case_sensitive.

2.2 Tree buffer

The tree buffer always reflects the current character settings (command

'characters properties set') and the current setting of collapsing mode for

zero-length branches (command 'trees set zerocollapse') (using a lazy

re-evaluation approach). So by changing any of these, a tree buffer with no

duplicate trees may end up with duplicate trees. Or a tree buffer in which all

trees have the same score may end up with trees of different scores.

2.3 Input

--> Subtopics

 program input native pinn anagallis data formats

 program input import pii Importing other data formats

2.3.1 Anagallis data formats

To read character matrices, see command 'characters read'. To set character

properties (weights, additive/non-additive, ...) and to define character

hierarchies, see command 'characters properties set'. To read trees, see command

trees read.

anagallis version 1.02a (27 May 2020) documentation - 32/65

2.3.2 Importing other data formats

See command 'import' and its subcommands 'import tnt' and 'import nexus' (but

nexus import is not supported yet). More information about support for TNT can

be found in section 'program tntmode'.

2.4 TNT mode

In addition to its native mode, anagallis has a TNT mode, a mode that partially

supports a tiny subset of TNT commands (Goloboff et al. 2008). Use command

'program set tntmode' ('pst') to toggle between both modes. The command prompt

indicates which mode is on: in TNT mode it has a 't'. TNT mode is also

implicitly entered when importing a TNT file with command 'import tnt' ('it').

The idea of TNT mode is to be able to read files with data matrices in TNT

format. Commands that are currently (partially) supported are 'ccode', 'help',

'nstates', 'xread', and 'quit' (the last one as a synonym for 'program set

tntmode -' or 'pst-'. An overview of the degree to which they are supported is

obtained by entering 'help*' in TNT mode.

Shortest unambiguous abbreviations are determined on the basis of this set of

supported commands. So, differently as in TNT, 'q' means 'quit', not

'qcollapse'.

Commands that are not supported (or plain wrong) are skipped with appropriate

warnings (they are flagged as invalid commands) but don't trigger errors.

Unsupported options of partially supported commands (as available in TNT version

1.1) are flagged as unsupported options but don't trigger errors either. So in

both cases anagallis keeps reading a TNT datafile rather than closing it with an

error message.

Data sets, character codes, and trees in the tree buffer persist across mode

changes. So you can read a matrix in regular mode, change its character settings

in TNT mode, and finally go back to analyze the data regular mode. Just switch

between counting from one and counting from zero when doing so.

Changes of the default datatype for TNT (TNT command 'nstates') do not persist

accross different TNT files or different TNT mode sessions.

3 References

Brazeau, M., 2011. Problematic character coding methods in morphology and their

effects. Biol. J. Linn. Soc. 104, 489-498.

Brazeau, M.D., Guillerme T., Smith, M.R., 2017. Morphological phylogenetic

analysis with inapplicable data. BioRxiv preprint first posted online October

26, 2017. DOI: http://dx.doi.org/10.1101/209775.

Coddington, J.A., Scharff, N., 1994. Problems with zero-length branches.

Cladistics 10, 415-423.

Coddington, J.A., Agnarsson, I., Hamilton, C., Bond, J.E., 2018. Spiders did not

repeatedly gain, but repeatedly lost, foraging webs. PeerJ Preprints 6:e27341v1

https://doi.org/10.7287/peerj.preprints.27341v1.

De Laet, J., 2005. Parsimony and the problem of inapplicables in sequence data.

Pp. 81-116 in Albert, V.A. (ed.) Parsimony, phylogeny and genomics. Oxford

anagallis version 1.02a (27 May 2020) documentation - 33/65

University Press, ISBN 0-19-856493-7.

De Laet, J., 2015. Parsimony analysis of unaligned sequence data: maximization

of homology and minimization of homoplasy, not minimization of operationally

defined total cost or minimization of equally weighted transformations.

Cladistics 31, 550-567.

De Laet, J., 2017. A note on Brazeau et al.'s (2017) algorithm for characters

with inapplicable data, illustrated with an analysis of their Fig. 3d using

anagallis, a program for parsimony analysis of character hierarchies. Technical

Report, November 5, 2017. DOI: 10.13140/RG.2.2.31309.54245

Farris, J.S., 1970. Methods for computing Wagner trees. Syst. Zool. 19, 83-92.

Farris, J.S., 1983. The logical basis of phylogenetic analysis. Pp. 7-36 in

Platnick, N.I, Funk, V.A. (eds.) Advances in Cladistics Vol. 2 (eds. N.I.

Platnick, V.A. Funk), pp. 7-36. Columbia University Press, New York, New York.

Farris, J.S., 1989. The retention index and the rescaled consistency index.

Cladistics 6, 91-100.

Farris, J.S., 2008. Parsimony and explanatory power. Cladistics 24, 825-847.

Fitch, W.M., 1971. Toward defining the course of evolution: minimum change for a

specific tree topology. Syst. Zool. 20, 406-416,

Goloboff, P.A, Nixon, K.C, Farris, J.S., 2008. TNT, a free program for

phylogenetic analysis. Cladistics 24, 774-786.

Maddison, W.P., 1993. Missing data versus missing characters in phylogenetic

analysis. Syst. Biol. 42, 576-581.

Page, R.D.M, 1993. COMPONENT: Tree comparison software for Microsoft Windows,

version 2.0. Natural History Museum, London.

Platnick, N.I., Griswold, C.E., Coddington, J.A., 1991. On missing entries in

cladistic analysis. Cladistics 7, 337-343.

Sankoff, D., Rousseau, P., 1975. Locating the vertices of a Steiner tree in an

arbitrary metric space. Mathematical Programming 9, 240-246.

Sereno, P.C., 2007. Logical basis for morphological characters in phylogenetics.

Cladistics 23, 565-587.

Simmons, P., 2017. Relative benefits of amino‐acid, codon, degeneracy, DNA, and
purine-pyrimidine character coding for phylogenetic analyses of exons. J. Syst.

Evol. 55, 85, 109.

Torres-Montúfar, A., Borsch, T. Ochoterena, H., 2018. When homoplasy is not

homoplasy: dissecting trait evolution by contrasting composite and reductive

coding. Syst. Biol. 67, 543–551.

anagallis version 1.02a (27 May 2020) documentation - 34/65

REGULAR COMMANDS

================

--

Command '"'

> Echo the input until an end-of-command character.

Command double-quote is useful to document script files with information that

gets echoed to the the output of the script, or to insert comments in open log

files. As currently implemented, the command ends when it encounters an

end-of-line or a semi-colon. So there is no way to include a semicolon in the

comment itself.

For comments that do not get echoed to the output, use command '#'.

--

Command '#'

> Skip input until the end of the input line.

Useful to insert comments in script files or to comment out commands in script

files.

To insert comments that are echoed to the output of the script, use command '"'

(double quote).

--

Command '>'

> Provide context-sensitive help (only available from the command prompt under

 'program set context =' or 'psc=').

When context-sensitive help is enabled, the current location in the command

hierarchy is indicated before the command prompt.

Experimental feature, remains to be thoroughly tested.

--

Command '?' <commandname>

> Shorthand for 'help command -': use '?xyz' for basic help about command 'xyz'.

> Argument

 commandname the command name or program option for which help is requested

 (required)

For the basic documentation of command or program option 'xyz', enter '? xyz'

('?xyz'). Use 'help summary c' ('hsc') for a list of command names and their

shortest abbreviations.

--

Command 'characters' (c) {cd, cp, cr, csc, csh}

> Current number of characters and terminals; has optional subcommands.

> Subcommands

 characters diagnose cd show character state optimizations on tree

 nodes; requires a subcommand

 characters properties cp set/show basic character properties or show

 derived character properties; requires a

anagallis version 1.02a (27 May 2020) documentation - 35/65

 subcommand

 characters read cr read character data; requires a subcommand (use

 command 'import' to import TNT or nexus

 character data)

 characters score csc a summary of the scores of all characters and

 character hierarchies on one or more trees

 characters show csh show the current dataset

--

Command 'characters diagnose' (cd) {cdp, cdt}

> Show character state optimizations on tree nodes; requires a subcommand.

> Subcommands

 characters diagnose plot cdp show tree plots of character state

 optimizations

 characters diagnose tabulate cdt show tables of character state

 optimizations

--

Command 'characters diagnose plot' (cdp) [abcCdDfgGijJkKnorstTuvW] <scopes>

> Show tree plots of character state optimizations.

> Options:

 a label the terminals with their names (this is the default; it is

 overwritten when option 'n' is present; this option is useful to

 have terminal names in such cases as well)

 b suppress numbering of internal nodes

 c interpret scopes that follow as characters to include; cannot be

 combined with option 'C'

 C interpret scopes that follow as characters to exclude; cannot be

 combined with option 'c'

 d dry run to set custom defaults: remember all other options in

 this invocation for use with the following invocations in this

 session (with no other options, the built-in defaults are

 restored)

 D dry run to show the current custom defaults

 f fname write output also to file fname (append mode by default)

 i when plotting subtrees that branch at the same level, plot small

 subtrees last, and equally sized non-leaf subtrees sorted

 according to their decreasing numeric code; this option also

 inverses the plot order of leaves that branch at the same level

 j indent increment for each next level in a character hierarchy

 (default 3; minimum 1, maximum 20)

 J add a blank line between each plot header and the plot itself

 g n use alternative ASCII glyph set 1 or 2 for plotting trees (has

 only effect under 'program set unicode -' or 'psu-')

 G n use alternative glyph set 1 for delimiting placeholders (curly

 braces instead of square brackets)

 k condensed output (shorter branches)

 K n truncate terminal names (to a minimum of n characters, n > 0)

 when they would exceed the specified width (option 'W') for

 plotting

 n label the terminals with their numeric code (their sequential

 number in the data matrix; see option 'a' for more information)

 r charnum include all characters from character hierarchy wth main root

 character charnum

 o modifies option 'f': use overwrite mode, not append mode

 s sort terminals that branch at same level according to their

 increasing numeric code (default: ascending alphabetical order of

anagallis version 1.02a (27 May 2020) documentation - 36/65

 terminal names)

 t interpret scopes that follow as trees to include; cannot be

 combined with option 'T'; this is the default interpretation of

 scopes

 T interpret scopes that follow as trees to exclude; cannot be

 combined with option 't' or with default scopes

 u show non-aggregate statesets of optimizations with different

 subcharacters (may result in multiple trees per character); only

 (possibly) affects characters in character hierarchies

 v verbose (only has effect with character hierarchies)

 W n maximum width (in characters) of a single line (beyond this, the

 tree is broken into subtrees); use -1 for the width of the

 current window (default), 0 to turn off this feature (valid

 values 20 - 5000)

> Argument

 scopes one or more scopes (character scopes by default, no default scope)

Shows the final state sets of one or more characters on one or more trees. There

is no default for the character(s) to show. The default tree is the current

tree.

Scopes and options may be intermingled. By default, scopes are interpreted as

scopes of characters to include. This default interpretation can be changed with

option 'C' (interpret scopes that follow as characters to exclude), option 't'

(interpret scopes that follow as trees to include) and option 'T' (interpret

scopes that follow as trees to exclude). Options 'c' and 'C' cannot be combined.

Neither can 't' and 'T'.

Polytomies are not optimized as polytomies. Optimizations shown are the ones for

the underlying dichotomous resolutions that the program happened to find first.

When a character that is part of a character hierarchy is specified as a

character to plot, all characters that lead from the main root character of the

hierarchy to that character are automatically included as well. As an example,

consider character hierarchy <1 5 <7 8 9 <10 11 15>>>. Requesting an

optimization plot for character 15 will automatically trigger plots for

characters 1, 7, and 10 as well.

Character optimizations are not plotted in the order in which the characters are

entered in this command, but, with the exception of subordinate characters in

character hierarchies, in numeric character order. Subordinate characters in a

character hierarchy are plotted as part of that hierarchy under the main root

character of that hierarchy. With option 'v', a reference to that main root

character is added at the numeric position of each character of the hierarchy

for which a plot was requested.

To plot optimizations for a full character hierarchy, all characters of that

hierarchy must be specified in the invocation of this command. Alternatively,

option 'r charnum' can be used (r for recursive), with charnum the number of the

main root character of that hierarchy. With this option, all characters of that

hierarchy are automatically included. It does not change the interpretation of

scopes as set with options 'c', 'C', 't' and 'T.

For each character that is part of a character hierarchy, the default statesets

that are shown are the aggregate statesets. Non-aggregate statesets can be

plotted using option 'u'.

--

Command 'characters diagnose tabulate' (cdt) [cCtT] <scope(s)>

anagallis version 1.02a (27 May 2020) documentation - 37/65

> Show tables of character state optimizations.

> Options:

 c interpret scopes that follow as characters to include; cannot be combined

 with option 'C'

 C interpret scopes that follow as characters to exclude; cannot be combined

 with option 'c'

 t interpret scopes that follow as trees to include; cannot be combined with

 option 'T'; this is the default interpretation of scopes

 T interpret scopes that follow as trees to exclude; cannot be combined with

 option 't' or with default scopes

> Argument

 scopes one or more scopes (character scopes by default, no default

 character scope)

Arguments and options can be intermingled.

Tabulate the final statesets of reconstructed inner nodes for one or more

characters on the current tree. Use option 't' or option 'T' to select other

trees.

Numbers of inner nodes correspond to the numbers as obtained with command 'trees

show plot'

Polytomies are not optimized (yet). Optimizations shown are the ones for the

underlying dichotomous resolutions that the program happened to find first.

For characters in a character hierarchy, the statesets shown are the aggregate

statesets.

--

Command 'characters properties' (cp) {cpm, cps}

> Set/show basic character properties or show derived character properties;

 requires a subcommand.

> Subcommands

 characters properties minmax cpm list minimum and maximum number of steps

 for all characters outside character

 hierarchies

 characters properties set cps set/show basic character properties

 (defaults: prior weight 1, active,

 non-additive, not part of a character

 hierarchy)

--

Command 'characters properties minmax' (cpm)

> List minimum and maximum number of steps for all characters outside character

 hierarchies.

For a character outside a character hierarchy, the maximum number of steps, max

(its number of steps on a star-tree; g of Farris 1989), is calculated directly

and exactly. The minimum number of steps for such a character, min (m of Farris

1989), is calculated using a single tree build using only those terminals that

have a different state set. This gives correct results for non-additive

characters or when no polymorphic terminals are present. It remains to be

determined if this always works for additive polymorphic terminals.

These numbers can be considered derived or secondary character properties: they

anagallis version 1.02a (27 May 2020) documentation - 38/65

depend on the basic character properties but also on the set of terminals being

considered.

For characters in character hierarchies, no such numbers are provided. For any

character hierarchy of interest, they can be obtained heuristically as follows.

For the minimum numbers, first inactivate all characters except those of that

character hierarchy. Next do a tree search under 'optimality set searchmode ='

('oss='). The score obtained provides the minimal score for the character

hierarchy as a whole. The distribution(s) of this score over the individual

characters of the hierarchy provide(s) the (range of possible) minimum numbers

for these characters.

Likewise, for the maximum numbers, first inactivate all characters except those

of that character hierarchy. Next do a tree search under 'optimality set

searchmode -' ('oss-'). The score obtained provides the maximum score for the

character hierarchy as a whole. The distribution(s) of this score over the

individual characters of the hierarchy provide(s) the (range of possible)

maximum numbers for these characters.

Command not active in anagallis v1.02a.

--

Command 'characters properties set' (cps) [/+-[]<>acefnopqv] <character scopes>

> Set/show basic character properties (defaults: prior weight 1, active,

 non-additive, not part of a character hierarchy).

> Options:

 /n set character weight to integer weight n for the character scopes

 that follow

 + set the character additive for the character scopes that follow

 (see -)

 - set the character non-additive for the character scopes that follow

 (see +)

 [activate the character scopes that follow (see])

] inactivate the character scopes that follow (see [)

 <> define a character hierarchy (see ><)

 >< undefine a character hierarchy (see <>)

 a show the activity stiatus (active/inactive) of all characters

 c show the character hierarchies that are currently defined

 e str str must be 'tnt'; write the character codes as a readable

 statement for TNT (as far as they exist there); this implies a

 renumbering of characters to start counting from zero

 f fname write output also to file fname (append mode by default)

 n show the non-additive/additive status of all characters

 o modify option 'f': use overwrite mode, not append mode

 p show the character weights in use

 q don't show any of the current settings (takes precedence over other

 output modifiers)

 v increase verbosity (up to two levels)

> Argument

 scopes one or more character scope (no default; scopes can be intermingled

 with options)

This is a multiline command, so it always needs a semicolon (';') to terminate.

Numbering of characters starts from 1 (but see option 'e'). There are two groups

of options:

1. character modifiers such as '+' or '[' that modify the interpretation of

 characters in the scopes that follow

anagallis version 1.02a (27 May 2020) documentation - 39/65

2. options such as 'a', 'e', or 'n' that set/modify the output of the command.

By default characters are active, non-additive, have weight one, and no

character hierarchies are defined. Character activity, additivity and weight can

be changed with the options '[', ']', '+', '-', and '/'.

Character scopes and options may be intermingled, and the modifiers that are

active are applied to the scopes as they are read. As with other commands, such

changes get only activated after the whole command finishes without an error (as

triggered; for example, by a non-existing option). An appropriate warning is

shown when nothing gets changed because of such errors.

By default, all current settings (character additivities, weights and

activities, and defined character hierarchies) are displayed in a program

readable form after each run of the command. Option 'q' turns this off. By

default, character additivities, weights, and activities are reported in one

statement and in the most condensed form . This implies that the character

scopes that are used will not necessarily show all characters in order. With one

occurrence of option 'v', characters are reported in order but grouped in scopes

as much as possible. With two occurrences of option 'v', characters are reported

individually. When character hierarchies have been defined, these are always

reported separately from activity, additivity and weight (see below for the

meaning of option 'v' in that case).

Options 'a', 'c', 'n', and 'p' can be used to select what will be shown in the

report as described above. From the moment one of these four is specified, only

the character properties so selected will be shown. When none of these is

specified, the command behaves as if all four are specified.

Outside character hierarchies, the dash character ('-') is treated (and shown)

as missing information ('?'). The possibility to toggle this to treating it as a

separate state is not available. The interpretation of a dash in a character

hierarchy is explained in detail below.

Compared to the ccode statement of programs as Hennig86, Nona or TNT, an

important extension is the possibility to define and undefine character

hierarchies.

To define or specify a character hierarchy, '<' and '>' can be used to set off

levels of (in)applicability. Within each level, the first character that is

specified is the absence/presence character that determines inapplicability

further on. Because it is at the root of a character (sub)hierarchy it is called

a root character. The root character of the complete hierarchy is called the

main or global root character. Within each level, the characters that follow the

root character are called subordinate characters at that level. These include

root characters of one level down: a root character of a nested level is a

subordinate character one level up. These are called complex subordinate

characters (as opposed to simple subordinate characters).

As an example,

 <1 5 6 <7 8>>

is a character hierarchy with main root character 1. This character codes

absence/presence of some feature. Characters 5, 6, and 7 are subordinate

characters at that level: they code three aspects of that feature where it is

present. Characters 5 and 6 are simple subordinate characters, character 7 is a

complex subordinate character: it is at the root of its own subhierarchy (it

codes absence/presence of a subfeature). Character 8, finally, is subordinate at

anagallis version 1.02a (27 May 2020) documentation - 40/65

that subordinate level and describes some feature of that subfeature.

Root characters can have at most four different state codes:

* a first one denoting absence

* a second one denoting presence

* a third one for inapplicability

* '?' for missing data.

Polymorphisms are not allowed in root characters. The main root character of a

hierarchy, in addition, is not allowed to have inapplicable data. If this would

be the case in an existing dataset, that datset must first manually be augmented

with one or more additional outer levels of applicability. The outer additional

level can then be used as the main root of the hierarchy.

By default, state code 0 is taken to indicate absence and state code - is taken

to indicate inapplicability. Presence is coded by whatever third state code used

(apart from '?' (but there are some constraints; see below). To let a different

state code denote absence, specify this after the character using a '!' followed

by that other state. To let a different state code denote inapplicability,

specify this after the character using a ':' followed by that other state. So in

root character 7 of hierarchy

 <1 5 6 <7 !1:0 8>>

state code 1 codes absence and state code 0 inapplicability; in character 1 it

is still default state code 0 that codes absence.

In simple subordinate characters in a character hierarchy (characters 5, 6 and 8

in the example), state code '-' is by default taken to indicate inapplicability.

To let a different state code denote inapplicability, specify this after the

character using a ':' followed by that other state. So in

 <1 5 :2 6 <7 8 :0>>

state code 2 denotes inapplicability in character 5 and state code 0 denotes

inapplicability in character 8; in character 6 it is still default state code -

that codes inapplicability.

Polymorphisms that involve inapplicability are not allowed.

In verbose mode (option 'v'), all root characters in the hierarchy will be shown

with their ':' and '!' modifiers; all simple subordinate characters with their

':'modifier. In non-verbose mode, these are only indicated where their values

differ from the defaults.

Within the specification of a character hierarchy, the regular code modifiers

and the options that modify output are not allowed, but the modifiers that are

active are applied while reading the specification.

Root character that don't have subordinate characters are allowed (as long as

their observed states can be interpreted as an absence/presence character), but

such trivial hierarchies don't serve any meaningful purpose. From a practical

point of view, they will slow down tree searches. Also note that the unweighted

score of such a a trivial character hierarchy will be one higher than for that

same character outside that trivial character hierarchy. This is so because

subcharacters are only taken into account inside character hierarchies.

Character scopes that span multiple characters are not allowed at the start of a

anagallis version 1.02a (27 May 2020) documentation - 41/65

(sub)hierarchy: root characters must be explicitly specified as a single

character. Character scopes that span multiple characters are allowed for simple

subordinate characters. When such a scope is followed by ':' and a state code,

that state code is taken to denote inapplicability in all characters of the

scope.

A character hierarchy imposes a number of logical constraints on the character

state distributions:

1. When a given terminal has missing data ('?') in a root character, it must

 have missing data in all subordinate characters as well. (If it is not known if

 a feature is present or not in a terminal, aspects or subfeatures are not known

 either).

2. When a given terminal has absence in a root character, all subordinate

 characters must have inapplicability for that terminal.

3. When a given terminal has inapplicability in a root character, all

 subordinate characters must have inapplicability as well.

4. When a given terminal has presence in a root character, none of the

 subordinate characters at that level can have inapplicability (but see below).

When a hierachy specification is submitted, it will only succeed when these

constraints are met. Failure for one of those reasons means that there is an

internal contradiction between the requested hierarchy and the state

distribution of the characters involved. If that's the case, the program will

point out which of these constraints is not met for which terminal and which

character.

The idea behind this way of specifying character hierarchies is to provide a

flexible way to adapt the specifications to existing datasets without having to

edit these datasets (too much) rather than the other way around. For the same

reason, even if the default values are different, it is not enforced that the

state code for inapplicability (':' modifier) and the state code for absence

('!' modifier) in root characters must be different (when a hierarchy is

properly defined, the program has sufficient information to figure out the

correct interpretation). However, when they are the same, the fourth constraint

is skipped in subordinate root characters because it can no longer be

unequivocally tested

To undefine a character hierarchy, enclose its main root character between '>'

and '<'. So

 '>1<'

undefines the hierarchy of the example.

A character hierarchy can be (in)activated as a whole by (in)activating its main

root character. It is currently not allowed to (in)activate part of a hierarchy.

As a work-around, the hierarchy can be undefined and then redefined with the

unwanted characters excluded. These can then be inactivated outside the

hierarchy.

Alternatively, the prior weights of the characters to be excluded can be set to

0. This does not require redefinition of the hierarchy but will slow down tree

searches: inactive characters are not optimized during tree searches but

characters that are part of a hierarchy and have weight zero are (outside

hierarchies, zero-weight characters are not optimized during tree searches). Be

aware that this can have unexpected side effects. If, for example, one would

give zero weight to tail absence/presence with non-zero weight for tail color,

one can end up with an awful lot of tail gains and losses (that each have weight

anagallis version 1.02a (27 May 2020) documentation - 42/65

zero).

To avoid confusion or ambiguity, some additional constraints are imposed when

setting character hierarchies:

state code '-' is not allowed as a regular state code;

'-' for absence in a character (!) is not allowed;

'?' is not accepted as code for inapplicability or as code for absence.

The restriction to allow '-' only to mean inapplicability in character

hierarchies makes it possible to use it unequivocally as a character that

separates subcharacters when showing optimizations of character hierarchies on

trees with commands ('characters diagnose plot' and 'characters diagnose

tabulate'). Whatever state code has been used for inapplicability when defining

a hierarchy (:), these two commands will use '-' to indicate inapplicability in

their output. This makes it easier to interpret the output of these commands,

especially in root characters where inapplicability and absence have been coded

with the same state code.

Characters that are inactive, whether part of a hierarchy or not, are not

optimized during tree searches. Afterwards their optimizations are available for

commands such as 'characters diagnose plot' though. The same is true for

characters that have weight 0 and are not part of a character group. Neither are

taken into account when collapsing zero-length branches.

--

Command 'characters read' (cr) {cra, crn}

> Read character data; requires a subcommand (use command 'import' to import TNT

 or nexus character data).

> Subcommands

 characters read alphanumeric cra read character data with up to 30 regular

 character states coded as 0-9 and a-t (or

 A-T)

 characters read numeric crn read character data with up to ten

 regular character states coded as 0-9

Support for interleaved data sets and for concatenating multiple data sets is

not available yet: all character data for an analysis have to be in a single

non-interleaved dataset.

After a first data set has been read, it is possible to read a new data set, but

it will replace the original one.

--

Command 'characters read alphanumeric' (cra)

> Read character data with up to 30 regular character states coded as 0-9 and

 a-t (or A-T).

Works mostly as NONA's xread command. Digits 0-9 and letters a-t (not case

sensitive) are available for a total of up to 30 different states. In addition,

'?' is available for missing data and '-' for inapplicable data.

A dash is by default interpreted and shown as missing data ('?'). It only

acquires its special meaning of inapplicable data in character hierarchies (see

command 'characters properties set'

As in Nona, there can be an optional comment between the command name and the

number of characters between the command name, enclosed by single quotes. The

anagallis version 1.02a (27 May 2020) documentation - 43/65

parser of anagallis does not recognize escaped single quotes as such, so make

sure the comment itself does not contain single quotes.

When the data have been read, characters are by default treated as not being

part of character hierarchies. Character hierarchies can be defined on top of

these data using command 'characters properties set'.

--

Command 'characters read numeric' (crn)

> Read character data with up to ten regular character states coded as 0-9.

Works mostly as NONA's xread command. Digits 0-9 are available for a total of up

to 10 different states. In addition, '?' is available for missing data and '-'

for inapplicable data.

A dash is by default interpreted and shown as missing data ('?'). It only

acquires its special meaning of inapplicable data in character hierarchies (see

command 'characters properties set').

As in Nona, there can be an optional comment between the command name and the

number of characters between the command name, enclosed by single quotes. The

parser of anagallis does not recognize escaped single quotes as such, so make

sure the comment itself does not contain single quotes.

When the data have been read, characters are by default treated as not being

part of character hierarchies. Character hierarchies can be defined on top of

these data using command 'characters properties set'.

> Examples

 #read the data

 characters read numeric

 '

 Tail example of Maddison (1991).

 Characters 13 and 14 are tail a/p and tail color.

 Maximizing homology, there is no long distance effect of tail color between

 the non-homologous tails of A-D and K-N and two trees are obtained.

 '

 14 15

 out 000000000000 0-

 A 111100000011 11

 B 111100000001 11

 C 111100000010 12

 D 111100000011 12

 E 111000000000 0-

 F 110000000000 0-

 G 100000000000 0-

 H 000010000000 0-

 I 000011000000 0-

 J 000011100000 0-

 K 000011110000 12

 L 000011111000 12

 M 000011111100 11

 N 000011111100 11

 ;

 #define the character hierarchy

 characters properties set <13 14>;

 #do a tree search

anagallis version 1.02a (27 May 2020) documentation - 44/65

 trees search mult *5;

 #give the number of trees found

 trees

 #plot all trees

 trees show plot;

--

Command 'characters score' (csc) [tT] <treescopes>

> A summary of the scores of all characters and character hierarchies on one or

 more trees.

> Options:

 t interpret scopes that follow as trees to include; cannot be combined with

 option 'T'; this is the default interpretation of scopes

 T interpret scopes that follow as trees to exclude; cannot be combined with

 option 't' or with default scopes

> Argument

 treescopes trees to list the character scores of (defaults to the current

 tree)

List the character scores on the trees in the specified tree scopes (default:

current tree). For characters with non-unity prior weight, the score is reported

as prior weight times basic score. The scores of inactive characters are

included in the output of this command (in the overview of all characters they

are put between square brackets).

For a character hierarchy, the total score of the hierarchy is listed for the

main absence/presence character of that hierarchy. For the other characters of

that hierarchy, a placeholder reference to their immediate parent

absence/presence character is provided. This is done because, in general,

character hierarchies have no unique distribution of their total score over

their constituent characters. So in a brief summary as provided here, it only

makes sense to give the score of the full hierarchy.

More detailed information about the score of character hierarchies can be

obtained with command 'characters diagnose plot' ('cdp').

--

Command 'characters show' (csh) [abefinoru]

> Show the current dataset.

> Options:

 a show active characters only

 b n set block size to n (insert a space every nth character; default is

 10)

 e str str must be 'tnt' or 'fasta': show the data in TNT or fasta format

 f fname write output also to file fname (append mode by default)

 i show informative characters only

 n no characters, just terminal names

 o modify option 'f': use overwrite mode, not append mode

 r show data as originally read (discard changes such as making a

 character state set continuous for an additive character in a

 polymorphic terminal)

 u use upper case for alphabetical state codes (default: use lower

 case)

--

Command 'help' (h) {hc, hd, hs, ht}

anagallis version 1.02a (27 May 2020) documentation - 45/65

> Show basic usage information and program options; has optional subcommands to

 get more detailed information.

> Subcommands

 help command hc show information about a specific regular command

 help dump hd show all built-in program documentation

 help summary hs overview of available commands and/or help topics

 help topic ht get information about a specific help topic

--

Command 'help command' (hc) [forsw] <- commandname>

> Show information about a specific regular command.

> Options:

 f fname write output also to file fname (append mode by default); implies

 'w80'

 o modify option 'f': use overwrite mode, not append mode

 r include documentation of subcommands (no effect when 's' is

 specified as well)

 s summary (only short description, completions, and list of options

 and arguments, no long description and no examples)

 w numcols set line width (in characters); beyond this, lines are wrapped;

 defaults to the width of the current window

> Argument

 - commandname a dash followed by the command name or program option for

 which help is requested (required)

For the documentation of command or program option 'xyz', enter 'help command -

xyz' ('hc-xyz'). The dash before the command name is required to disambiguate

cases where a command starts with a leter that is also an option of this help

command. When using this command without options, command '? xyz' can be used as

a shorthand for 'help command - xyz'.

By default, the command name can be abbreviated (check command 'program set

shortcommands' to change this). Use 'help summary c' ('hsc') for a list of

command names and their shortest abbreviations.

Values for option 'w' must be in the range 66..10000. When using a w-value

higher than the width of the current window, output will not wrap correctly in

the window. With option 'f', wrapping is by default done at 80 characters (and

not according to the current window). This default can be changed with option

'w'.

--

Command 'help dump' (hd) [cfilostTuw]

> Show all built-in program documentation.

> Options:

 c dump documentation of regular commands ('c', 'i', 't', 'T', and

 'u' are additive)

 f fname write output also to file fname (append mode by default); implies

 'w80'

 i dump an index of all commands and topics ('c', 'i', 't', 'T', and

 u are additive) (as with command 'help summary')

 l use multilevel lists of command and topic completions

 o modify option 'f': use overwrite mode, not append mode

 s summary (show only show short description, completions, and list

 of options and arguments for the commands)

 t dump topics ('c', 'i', 't', 'T', and 'u' are additive)

anagallis version 1.02a (27 May 2020) documentation - 46/65

 T dump documentation of TNT mode commands ('c', 'i', 't', 'T', and

 'u' are additive)

 u dump program usage and options ('c', 'i', 't', 'T', and 'u' are

 additive)

 w numcols set line width (in characters); beyond this, lines are wrapped;

 defaults to the width of the current window

By default, all built-in documentation is dumped. When at least one of options

'c', 'i', 't', 'T' is present, output follows absence/presence of these three

options.

Values for the option 'w' must be in the range 66..10000. When using a w-value

higher than the width of the current window, output will not wrap correctly in

the window. With option 'f', wrapping is by default done at 80 characters (and

not according to the current window). This default can be changed with option

'w'.

--

Command 'help summary' (hs) [bcCfilnostTvw]

> Overview of available commands and/or help topics.

> Options:

 b brief: do not include the short descriptions

 c show regular commands ('c', 't' and 'T' are additive)

 C c use character 'c' as field delimiter (useful for creating csv

 output)

 f fname write output also to file fname (append mode by default); implies

 'w80'

 i num number of characters to indent for each next level in the command

 or topic hierarchy (2 by default, 100 at most; at least 0 with

 option 'v', at least 1 otherwise; numbers outside this range are

 set to the appropriate extreme)

 l num number of levels to show (0 stands for all levels; this is the

 default when the option is not present)

 n use numeric codes for shortest unambiguous abbreviations

 o modify option 'f': use overwrite mode, not append mode

 s num change the space between output fields (num is 2 by default, 1 at

 least, and 100 at most; numbers outside this range are set to the

 appropriate extreme)

 t show topics ('c', 't' and 'T' are additive)

 T show TNT mode commands ('c', 't', and 'T' are additive)

 v verbose (spell out full command name at each level)

 w numcols set line width (in characters); beyond this, lines are wrapped;

 defaults to the width of the current window

As long as options 'c', 't', and 'T' are all three absent, 'c' and 't' are the

defaults.

Values for the option 'w' must be in the range 66..10000. When using a w-value

higher than the width of the current window, output will not wrap correctly in

the window. With option 'f', wrapping is by default done at 80 characters (and

not according to the current window). This default can be changed with option

'w'.

--

Command 'help topic' (ht) [forw] <- topicname>

> Get information about a specific help topic.

> Options:

anagallis version 1.02a (27 May 2020) documentation - 47/65

 f fname write output also to file fname (append mode by default); implies

 'w80'

 o modify option 'f': use overwrite mode, not append mode

 r include subtopics

 w numcols set line width (in characters); beyond this, lines are wrapped;

 defaults to the width of the current window

> Argument

 - topicname a dash followed by the topic name for which help is requested

 (required)

For the documentation of topic 'xyz', enter 'help topic - xyz' ('ht-xyz'). The

dash before the topic name is required to disambiguate cases where a topic

starts with a leter that is also an option of this help command.

By default, the topic name can be abbreviated (check command 'program set

shortcommands' to change this). Use 'help summary t' ('hst') for a list of

topics and their shortest abbreviations.

Values for option 'w' must be in the range 66..10000. When using a w-value

higher than the width of the current window, output will not wrap correctly in

the window. With option 'f', wrapping is by default done at 80 characters (and

not according to the current window). This default can be changed with option

'w'.

--

Command 'import' (i) {in, it}

> Import data from other file formats; requires a subcommand.

> Subcommands

 import nexus in execute a nexus datafile (supported nexus subset still

 empty in this version)

 import tnt it execute a TNT datafile (limited support for a tiny subset

 of TNT commands)

--

Command 'import nexus' (in) <nexusfilename>

> Execute a nexus datafile (supported nexus subset still empty in this version).

> Argument

 nexusfilename name of the nexus file (required)

Under construction.

--

Command 'import tnt' (it) <tntfilename>

> Execute a TNT datafile (limited support for a tiny subset of TNT commands).

> Argument

 tntfilename name of the file that contains TNT commands (required)

Use command 'help summary T' ('hsT') to get an overview an overview of supported

TNT commands. These are only available in TNT mode (command 'program set tntmode

=' or 'pst=') and in TNT files that are imported with this command.

More information about these supported TNT commands is available with command

'help' within TNT mode.

--

Command 'log' (l) {lp, lr, lsta, lsto}

anagallis version 1.02a (27 May 2020) documentation - 48/65

> Name and status of log file, if there is one; has optional subcommands.

> Subcommands

 log pause lp suspend output to the logfile

 log resume lr resume output to the logfile

 log start lsta open a log file (append mode by default)

 log stop lsto close the current logfile

--

Command 'log pause' (lp)

> Suspend output to the logfile.

--

Command 'log resume' (lr)

> Resume output to the logfile.

--

Command 'log start' (lsta) [nof]

> Open a log file (append mode by default).

> Options:

 n suppress logging of a header with time and date

 f logfilename name of the logfile to open (required, append mode by

 default)

 o open the file in overwrite mode

When a logfile is open, all screen output is also written to the logfile.

This is a general logging file that logs output of all commands until it is

paused or closed. In addition, several commands have options to specify logging

of their output to a file. Such command-specific logging happens in addition to

this general logging.

--

Command 'log stop' (lsto)

> Close the current logfile.

--

Command 'optimality' (o) {os}

> Set/show optimality criterion; requires a subcommand.

> Subcommands

 optimality set os overview of settings that relate to the optimality

 criterion; has optional subcommands

--

Command 'optimality set' (os) {osd, oss}

> Overview of settings that relate to the optimality criterion; has optional

 subcommands.

> Subcommands

 optimality set deviation osd set/show allowed deviation from optimality

 in tree searches and tree buffer cleaning

 optimality set searchmode oss set/show search mode: look for best (=,

 default) or worst (-) trees

anagallis version 1.02a (27 May 2020) documentation - 49/65

--

Command 'optimality set deviation' (osd) <n>

> Set/show allowed deviation from optimality in tree searches and tree buffer

 cleaning.

> Argument

 n a non-negative integer

This value is used during swapping (command 'trees search') and when selecting

optimal trees (command 'trees select best'). It has only limited influence while

building initial trees for swapping.

This has consequences that at first may seem counterintuitive. Assume a strongly

structured dataset for which 20 replicates of tree building and swapping (using

command 'trees search mult') all return the same tree of score 100. Next the

deviation from optimality is set to 50 and 20 new replicates also just return

that same tree. This does not necessarily mean that there are no trees of

lengths 101-150. What happens most likely is that the build itself already finds

that tree in all replicates. And because it is already in the tree buffer, it is

not passed on to swapping in the replicates.

The best thing to do then after increasing the deviation and before initiating

new search replicates, is to explicitly swap the trees in the tree buffer

(command 'trees search swap').

When the deviation is decreased, the tree buffer is left as it is. An explicit

invocation of command 'trees select best' is required to make it reflect the new

situation.

When looking for worst trees (see command 'optimality set searchmode'), the

requested level of suboptimality is reported as a negative integer.

--

Command 'optimality set searchmode' (oss) [-=]

> Set/show search mode: look for best (=, default) or worst (-) trees.

> Options:

 = search best trees

 - search worst trees

Looking for worst trees may be useful to get an indication of the spread of

possible tree scores

--

Command 'program' (p) {pq, ps}

> Quit the program or set/show general settings; requires a subcommand.

> Subcommands

 program quit pq quit the program

 program set ps overview of general settings; has optional subcommands

--

Command 'program quit' (pq)

> Quit the program.

Close all open files and quit the program.

--

anagallis version 1.02a (27 May 2020) documentation - 50/65

Command 'program set' (ps) {psc, psl, psr, pss, pst, psu}

> Overview of general settings; has optional subcommands.

> Subcommands

 program set context psc set/show if context-sensitive help (command

 '>') is available from the command line (=)

 or not (-, default)

 program set longlists psl set/show if lists of command completions are

 multilevel (=) or not (-, default)

 program set randomseed psr set/show seed for generator of pseudorandom

 numbers

 program set shortcommands pss set/show if command abbreviations are

 allowed (=, default) or not (-)

 program set tntmode pst set/show if TNT mode is on

 program set unicode psu set/show if tree plotting uses multibyte

 UTF-8 characters (=, default) or not (-)

--

Command 'program set context' (psc) [-=]

> Set/show if context-sensitive help (command '>') is available from the command

 line (=) or not (-, default).

> Options:

 - turn of availability of context-sensitive help command '>'

 = turn off availability of context-sensitive help command '>'

When context-sensitive help is on, commands that have no possible subcommands,

options, and arguments are still terminated by hitting the 'enter' key. Likewise

for commands that only have '-' and '=' as options and for which at least one

option has been provided. In all other cases, commands have to be terminated

explicitly with a semicolon.

Still an experimental feature. It seems to be working quite well but needs to be

thoroughly tested.

When context-sensitive help is off, a semicolon is only required for the few

commands that possibly take a long (structured) argument list.

--

Command 'program set longlists' (psl)

> Set/show if lists of command completions are multilevel (=) or not (-,

 default).

Affects the list of command completions that is shown when a command is

specified as an ambiguous abbreviation, with a missing required subcommand, or

with an invalid subcommand. For the completion lists that are used in the help

commands, check the options for those commands.

--

Command 'program set randomseed' (psr) <n>

> Set/show seed for generator of pseudorandom numbers.

> Argument

 n a strictly positive integer

Without an argument, the current seed for the pseudorandom number generator is

shown (initially 1 by default). With a strictly positive argument n, the current

seed is set to n.

anagallis version 1.02a (27 May 2020) documentation - 51/65

The program uses pseudorandom numbers on such various occasions as generating a

pseudorandom addition sequence to add terminals to a growing tree or to resample

datasets (the latter is not available in this version).The generator used is the

same as in Component 2.0 (Page 1993). It calculates the next pseudorandom number

from the current one using this recursion:

 X(n + 1) = a * X(n) mod p

with

 p = 2 power 31 -1 (a Mersenne prime)

 a = 7 power 5

At each iteration, the current number is the seed for the next one.

By setting the seed to a specific value at the start of the program, it is

guaranteed that, say, a tree search that is performed after starting the program

will by default return the same trees every time. This default behavior ensures

reproducibility of default searches after program startup but it is not suited

for parallelization of replicates for a given data set by starting a number of

parallel anagallis batch sessions, either manually or script-driven. In such

cases, each parallel invocation has to set its own random seed.

--

Command 'program set shortcommands' (pss) [-=]

> Set/show if command abbreviations are allowed (=, default) or not (-).

> Options:

 = abbreviations allowed (default)

 - abbreviations not allowed

This setting only applies in regular program mode when context-sensitive help is

off (command 'program set context'). It does not apply in TNT mode.

--

Command 'program set tntmode' (pst) [=-]

> Set/show if TNT mode is on.

> Options:

 = switch to TNT mode

 - switch to regular mode

--

Command 'program set unicode' (psu) [=-]

> Set/show if tree plotting uses multibyte UTF-8 characters (=, default) or not

 (-).

> Options:

 = enable unicode characters when plotting trees (default)

 - disable unicode characters when plotting trees (just use ASCII

 characters)

When plotting trees, the program by default uses some UTF-8 encoded unicode

characters that are longer than one byte.

Most terminals properly deal with such characters, but when exporting the output

to a word processor make sure to use a non-proportional font that properly deals

with UTF-8 encoded unicode characters. In openoffice 3.2, for example, font

anagallis version 1.02a (27 May 2020) documentation - 52/65

'Courier 10 Pitch' is problematic but 'FreeMono' is ok.

This command can be used to disable the use of UTF-8 encoded unicode characters

when plotting trees.

Note that input is always assumed to be 100% ASCII. This command does not change

that.

--

Command 'script' (s) {se, sr}

> Overview of open script files; has optional subcommands.

> Subcommands

 script execute se overview of script files that are opened for execution;

 has optional subcommands

 script record sr name and status of the file that is open for recording

 commands, if there is one; has optional subcommands

> Examples

 Script files can be opened for execution or for recording commands that are

entered from the command prompt.

--

Command 'script execute' (se) {sep, ser, sesta, sesto}

> Overview of script files that are opened for execution; has optional

 subcommands.

> Subcommands

 script execute pause sep temporarily suspend execution of current

 script file and get interactive input

 script execute resume ser resume reading from the current script file

 that is open for execution

 script execute start sesta open a script file and start executing its

 commands

 script execute stop sesto close the current script file that is open for

 execution

--

Command 'script execute pause' (sep)

> Temporarily suspend execution of current script file and get interactive

 input.

--

Command 'script execute resume' (ser)

> Resume reading from the current script file that is open for execution.

--

Command 'script execute start' (sesta) [f]

> Open a script file and start executing its commands.

> Options:

 f fname name of the file that contains anagallis commands to execute

 (required)

Script files for execution can be nested up to 16 levels deep.

--

anagallis version 1.02a (27 May 2020) documentation - 53/65

Command 'script execute stop' (sesto)

> Close the current script file that is open for execution.

--

Command 'script record' (sr) {srp, srr, srsta, srsto}

> Name and status of the file that is open for recording commands, if there is

 one; has optional subcommands.

> Subcommands

 script record pause srp temporarily suspend writing to the current file

 for recording commands

 script record resume srr resume recording commands to the script file

 for recording

 script record start srsta open a file for recording commands (append mode

 by default)

 script record stop srsto close the current file for recording commands

When there is an open unsuspended script file for recording commands to, all

commands that are entered from the command prompt (or supplied with the program

invocation) are written to that file. Command abbreviations are expanded before

doing so. Commands that are read from a scriptfile are not included. Useful to

keep a history of an interactive session, to edit/replay the session later on,

or to expand abbreviated commands.

--

Command 'script record pause' (srp)

> Temporarily suspend writing to the current file for recording commands.

--

Command 'script record resume' (srr)

> Resume recording commands to the script file for recording.

--

Command 'script record start' (srsta) [fon]

> Open a file for recording commands (append mode by default).

> Options:

 n suppress logging of a header with time and date

 f scriptfilename name of the scriptfile to open ifor recording commands

 (required, append mode by default)

 o open the file in overwrite mode

When a file for recording anagallis commands is open, all commands entered from

the command prompt are written to this file. To enhance readability, all

abbreviated commands are expanded.

This command can also be used to expand abbreviations in an existing scriptfile,

albeit indirectly: first open a file to record to, next paste the contents of

that scriptfile to the command prompt.

--

Command 'script record stop' (srsto)

> Close the current file for recording commands.

--

anagallis version 1.02a (27 May 2020) documentation - 54/65

Command 'trees' (t) {tc, trr, tsc, tsea, tsel, tset, tsh}

> Current number of trees in memory; has optional subcommands.

> Subcommands

 trees consense tc calculate consensus trees; requires a subcommand

 trees read trr read trees in parenthetical notation (use command

 'import' to import TNT or nexus trees)

 trees score tsc list the score of the current data on one or more

 trees

 trees search tsea search trees; requires a subcommand

 trees select tsel manipulate trees in the tree buffer; requires a

 subcommand

 trees set tset overview of tree related settings; has optional

 subcommands

 trees show tsh show trees; requires a subcommand

--

Command 'trees consense' (tc) {tcm, tcs}

> Calculate consensus trees; requires a subcommand.

> Subcommands

 trees consense majority tcm majority rule consensus tree

 trees consense strict tcs strict consensus tree

--

Command 'trees consense majority' (tcm) [abcdDefgikKnosStTW] <scopes>

> Majority rule consensus tree.

> Options:

 a label the terminals with their names (this is the default; it is

 overwritten when option 'n' is present; this option is useful to

 have terminal names in such cases as well)

 b suppress numbering of internal nodes

 c n n is the cutoff percentage (between 0 and 99): ony clades with

 higher occurrence are shown; for building a tree (default, option

 'p' and option 'w'), values below 50 are interpreted as 50 (but

 clades theat occur less frequently are still shown with the option

 'i')

 d dry run to set custom defaults: remember all other options in this

 invocation for use with the following invocations in this session

 (with no other options, the built-in defaults are restored)

 D dry run to show the current custom defaults

 i when plotting subtrees that branch at the same level, plot small

 subtrees last, and equally sized non-leaf subtrees sorted according

 to their decreasing numeric code; this option also inverses the

 plot order of leaves that branch at the same level

 g n use alternative ASCII glyph set 1 or 2 for plotting trees (has only

 effect under 'program set unicode -' or 'psu-')

 i when plotting subtrees that branch at the same level, plot small

 subtrees last, and equally sized non-leaf subtrees sorted according

 to their decreasing numeric code; this option also inverses the

 plot order of leaves that branch at the same level

 k condensed output (shorter branches)

 K n truncate terminal names (to a minimum of n characters, n > 0) when

 they would exceed the specified width (option 'W') for plotting

 n label the terminals with their numeric code (their sequential

 number in the data matrix; see option 'a' for more information)

 f fname write output also to file fname (append mode by default)

 o modifies option 'f': use overwrite mode, not append mode

anagallis version 1.02a (27 May 2020) documentation - 55/65

 s sort terminals that branch at same level according to their

 increasing numeric code (default: ascending alphabetical order of

 terminal names)

 S silent (suppress summary statement at start of output)

 t interpret scopes that follow as trees to include; cannot be

 combined with option 'T'; this is the default interpretation of

 scopes

 T interpret scopes that follow as trees to exclude; cannot be

 combined with option 't' or with default scopes

 W n maximum width (in characters) of a single line (beyond this, the

 tree is broken into subtrees); use -1 for the width of the current

 window (default), 0 to turn off this feature (valid values 20 -

 5000)

> Argument

 scopes one or more tree scopes (defaults to all trees)

Scopes and options may be intermingled.

--

Command 'trees consense strict' (tcs) [abdDfgikKnosStTwW] <scopes>

> Strict consensus tree.

> Options:

 a label the terminals with their names (this is the default; it is

 overwritten when option 'n' is present; this option is useful to

 have terminal names in such cases as well)

 b suppress numbering of internal nodes

 d dry run to set custom defaults: remember all other options in this

 invocation for use with the following invocations in this session

 (with no other options, the built-in defaults are restored)

 D dry run to show the current custom defaults

 i when plotting subtrees that branch at the same level, plot small

 subtrees last, and equally sized non-leaf subtrees sorted according

 to their decreasing numeric code; this option also inverses the

 plot order of leaves that branch at the same level

 g n use alternative ASCII glyph set 1 or 2 for plotting trees (has only

 effect under 'program set unicode -' or 'psu-')

 k condensed output (shorter branches)

 K n truncate terminal names (to a minimum of n characters, n > 0) when

 they would exceed the specified width (option 'W') for plotting

 n label the terminals with their numeric code (their sequential

 number in the data matrix; see option 'a' for more information)

 f fname write output also to file fname (append mode by default)

 o modifies option 'f': use overwrite mode, not append mode

 s sort terminals that branch at same level according to their

 increasing numeric code (default: ascending alphabetical order of

 terminal names)

 S silent (suppress summary statement at start of output)

 t interpret scopes that follow as trees to include; cannot be

 combined with option 'T'; this is the default interpretation of

 scopes

 T interpret scopes that follow as trees to exclude; cannot be

 combined with option 't' or with default scopes

 w write the consensus tree in parenthetical notation (and ignore the

 options to tweak plotting; see option 'p')

 W n maximum width (in characters) of a single line (beyond this, the

 tree is broken into subtrees); use -1 for the width of the current

 window (default), 0 to turn off this feature (valid values 20 -

 5000)

anagallis version 1.02a (27 May 2020) documentation - 56/65

> Argument

 scopes one or more tree scopes (defaults to all trees)

Scopes and options may be intermingled.

--

Command 'trees read' (trr) [a]

> Read trees in parenthetical notation (use command 'import' to import TNT or

 nexus trees).

> Options:

 a the terminals in the trees are indicated with their alphanumeric names,

 not with their sequential number in the current dataset

By default, terminals are indicated using numbers that correspond to the current

dataset. The first terminal in the dataset is terminal 1 (not 0). Use option 'a'

to indicate the terminals with their names.

Parentheses within a tree must match and an outer pair of parentheses is

required (so '((1 2) (3 4))' is ok, '(1 2)(3 4)' not). Different trees within a

single statement must be separated using '*', the last tree must be followed by

a semicolon. This is so because reading trees is a command that can span

multiple lines, so the semicolon is required to indicate that no more input

trees will follow.

Polytomies are internally resolved in a further unspecified way. After being

read, the trees are evaluated according to the current dataset and the current

settings for collapsing zero-length branches (and therefore the number of

terminals and their labels must match). Only those that are not yet in the tree

buffer are retained.

Trees in other formats can be imported with command 'import'.

> Examples

 characters read numeric

 1 4

 a 0

 b 0

 c 1

 d 1

 ;

 trees read (1 2 (3 4)) * (1 4 (2 3));

 trees read a

 (a c (b d))

 ;

--

Command 'trees score' (tsc) <treescopes>

> List the score of the current data on one or more trees.

> Argument

 tree scopes trees to show the score of (defaults to the current tree)

List the total (weighted) score of all active characters on the trees in the

specified scopes (defaults to the current tree).

--

Command 'trees search' (tsea) {tseam, tseas}

anagallis version 1.02a (27 May 2020) documentation - 57/65

> Search trees; requires a subcommand.

> Subcommands

 trees search mult tseam do one or more replicates of building a tree and

 swapping it (spr or tbr)

 trees search swap tseas swap trees from the tree buffer (spr or tbr)

--

Command 'trees search mult' (tseam) [*-ahkr] <n>

> Do one or more replicates of building a tree and swapping it (spr or tbr).

> Options:

 * do tbr swapping (spr by default)

 - skip swapping, just build an initial tree

 a use addition sequence 'as is' in first replicate (default: random

 addition sequence)

 h n hold at most n trees for each repetion

 k keep the best trees of each replicate (even if they are not the best

 overall)

 r use a random tree to initiate swapping

> Argument

 n repeat this n times (n > 0; defaults to 1)

Do a number of repetitions (1 by default) of building a tree and (by default)

swapping it. By default the build is done with a random terminal addition

sequence. With the 'r' option, the build just selects a random tree. (In both

cases, the reported random seed for a replicate is the current seed at the start

of the build.) With the 'a' option, the build of the first replicate uses the

terminal addition sequence as laid out in the dataset ('as is'). Documentation

of details of swap process (when switching to a next tree to swap and things

like that): to be done.

During the build stage, character hierarchy definitions are skipped: the/a best

insertion point for the next terminal is searched as if no character hierarchies

have been defined (but the reported score of the full tree that is obtained does

take them into account afterwards). During swapping, defined character

hierarchies are properly taken into account.

Options and argument may be intermingled. When more than one number is

specified, the last one is used.

By default, only the best trees (according to current settings) over all

replicates are retained. With option 'k', the best trees of each replicate will

be retained.

See command 'trees search swap' for some comments on tree buffer maintenance.

During tree searches, the dot ('.') and the comma (',') have special meaning:

hitting the dot during a tree search ends the current replicate, hitting the

comma ends the complete search.

--

Command 'trees search swap' (tseas) [*k] <tree scopes>

> Swap trees from the tree buffer (spr or tbr).

> Options:

 * do tbr swapping (spr by default)

 k for each original tree being swapped, keep its best trees (even if they

 are not the best overall)

anagallis version 1.02a (27 May 2020) documentation - 58/65

> Argument

 tree scopes trees to swap (required)

There is no default tree scope, so at least one tree scope must be specified

(this can be a trival scope of just one tree). Multiple scopes may be specified.

Scopes and options may be intermingled. Use '.' to swap all trees in memory.

Swapping any single starting tree from the specified scopes proceeds similarly

as swapping the starting tree that results from an initial build for a single

replicate with command 'trees search mult': all new trees that are derived from

the starting tree are themselves recursively swapped before proceeding to the

next starting tree; while swapping a starting tree, the numbers reported refer

to trees derived from that tree, not to all trees in the tree buffer; the best

length reported while swapping a starting tree refers to the best length

starting that starting tree, not from the current globally best length.

A difference with command 'trees search mult' is in tree buffer maintenance.

With command 'trees search mult', the tree buffer is checked and maintained

against the current best global length after each replicate. With command 'trees

search swap', global maintenance of the tree buffer is only performed after all

starting trees have been swapped.

While swapping, the dot ('.') and the comma (',') have special meaning: hitting

the dot during a tree search ends swapping of the current tree from the

specified tree scopes, hitting the comma ends the complete search.

--

Command 'trees select' (tsel) {tselb, tseld, tselk, tselu}

> Manipulate trees in the tree buffer; requires a subcommand.

> Subcommands

 trees select best tselb discard suboptimal trees

 trees select delete tseld discard the trees in the specified tree scopes

 trees select keep tselk discard the trees that are outside the specified

 tree scopes

 trees select unique tselu discard duplicate trees

--

Command 'trees select best' (tselb)

> Discard suboptimal trees.

--

Command 'trees select delete' (tseld) <scopes>

> Discard the trees in the specified tree scopes.

> Argument

 scopes one or more tree scopes

--

Command 'trees select keep' (tselk) <scopes>

> Discard the trees that are outside the specified tree scopes.

> Argument

 scopes one or more tree scopes

--

Command 'trees select unique' (tselu)

anagallis version 1.02a (27 May 2020) documentation - 59/65

> Discard duplicate trees.

When the level of collapsing zero-length branches is increased to a more severe

level (see command 'trees set zerocollapse'), trees that were different before

may no longer be different. This command can then be used to weed out

duplicates.

--

Command 'trees set' (tset) {tsetc, tseto, tsetw, tsetz}

> Overview of tree related settings; has optional subcommands.

> Subcommands

 trees set current tsetc set/show the default tree that is for example

 used when showing trees or character

 optimizations on trees

 trees set outgroup tseto set/show terminal(s) to be used as

 outgroup(s) when showing trees

 trees set width tsetw set/show default maximum width of a line when

 plotting trees

 trees set zerocollapse tsetz set/show the rule for collapsing zero-length

 branches

--

Command 'trees set current' (tsetc)

> Set/show the default tree that is for example used when showing trees or

 character optimizations on trees.

--

Command 'trees set outgroup' (tseto) [a] <terminal number(s) or name(s)>

> Set/show terminal(s) to be used as outgroup(s) when showing trees.

> Options:

 a force interpretation of argument(s) as terminal name(s)

> Argument

 terminal(s) name(s) or numeric code(s) of terminal(s)

When one or more arguments are specified, this command sets the terminal(s) to

be used as outgroup(s) when showing trees. All current tree evaluation

algorithms are unrooted, so outgroups are extraneous to the analyses in the

strict sense.

An outgroup terminal can be specified using its numeric code (its sequential

number in the dataset, starting from one) or using its name, but both ways

cannot be mixed in a single call. So if the first outgroup terminal is specified

using its numeric code, all following outgroup terminals must be specified using

numeric codes as well; and if the first outgroup terminal is specified using its

name, then all following outgroup terminals must be specified using their names

as well.

By default, numeric arguments are interpreted as numeric terminal codes. But

anagallis allows terminal names to be numbers as well. In that case and if so

required, option 'a' can be used to skip the default interpretation of numbers.

When multiple outgroups are specified, the first terminal is considered the

primary outgroup. When showing any particular tree, the branch that is used for

rooting is the branch that divides that tree in (1) the largest group that

contains only outgroups and that includes the primary outgroup and (2) a group

that also or uniquely contains non-outgroups.

anagallis version 1.02a (27 May 2020) documentation - 60/65

Without arguments, the current settings are shown.

--

Command 'trees set width' (tsetw)

> Set/show default maximum width of a line when plotting trees.

Beyond the requested width, trees are broken into subtrees of appropriate sizes

when plotted. The value as set here can be overwritten with option 'W' of the

various commands that plot trees.

The default is the width of the window in which a tree is plotted. To restore

this default, set the width to -1. Set the width to zero to turn off this

feature (the program actually uses a large built-in maximum then). Lines that

are longer than the current window will then just wrap to the next line or

lines.

--

Command 'trees set zerocollapse' (tsetz) [012]

> Set/show the rule for collapsing zero-length branches.

> Options:

 0 don't collapse branches

 1 consider a branch supported when there is at least one character that may

 have a step on that branch (as 'ambiguous =' in Nona)

 2 consider a branch supported when there is at least one character that

 must have a step on that branch (as 'ambiguous -' in Nona). Default.

See Coddington and Scharff (1994) for background information. As known, the

default rule for collapsing that is used here may occasionally overcollapse

trees. But not to the degree that their strict consensus is affected (the

majority rule consensus tree may be).

Whether or not a branch is collapsed is determined by operations on the final

statesets at both ends of the branch. For a character that is part of a

character hierarchy, those operations are currently done using the aggregate

statesets. It's probably better to loop over the non-aggregate statesets but the

program doesn't do that yet.

Whether using aggregate statesets or non-aggregate statesets for characers in

character hierarchies, characters with inapplicables pose yet another problem

for collapsing branches. Assume state distribution ((1 -) (- 2)) on tree ((A B)

(C D)). It has two optimizations: a first in which the two inner nodes have

state '-', a second in which neither inner node has state '-'. The first

optimization has two subcharacters and no transformations, the second has one

subcharacter and one transformation. That transformation, between state 1 and

state 2, has to occur on the path between A and D. So it can occur on the branch

leading to A, on the inner branch, or on the branch leading to D. Depending on

where the transformation is assumed to occur, both inner nodes can have state 1

or state 2. This is reflected in their (identical) optimized statesets as

calculated by this program: [12] and [-] non-aggregate, [-12] aggregate. If

support for the inner branch is calculated from such statesets (as is the case

here), that inner branch will be collapsed, even if there exists an optimization

on which a transformation occurs on that branch. That is ok under 'ambiguous -'

but amounts to overcollapsing under 'ambiguous ='.One could alternatively mark

that branch as supported under 'ambiguous -', but doing so leads to what might

be called 'undercollapsing' in more complex cases. As an illustration, assume

state distribution (1 (- (? (- 2)) on tree (A (B (C (D E))). Reasoning as above,

anagallis version 1.02a (27 May 2020) documentation - 61/65

all inner nodes have [-12] as their aggregate optimal stateset. The single

transformation that may be present can now happen on the branch to A, on the

branch to E, or on both inner branches. So these inner branches might be

considered supported under 'ambiguous -' and left uncollapsed. But they cannot

be supported simultaneously by this character.

When switching to a more severe mode of collapsing, the tree buffer may end up

with duplicate trees. Command 'trees select unique' can be used to remove the

duplicates.

--

Command 'trees show' (tsh) {tshp, tshw}

> Show trees; requires a subcommand.

> Subcommands

 trees show plot tshp plot trees using character graphics

 trees show write tshw write trees in parenthetical notation

--

Command 'trees show plot' (tshp) [abdDfgikKnorsStTW] <scopes>

> Plot trees using character graphics.

> Options:

 a label the terminals with their names (this is the default; it is

 overwritten when option 'n' is present; this option is useful to

 have terminal names in such cases as well)

 b suppress numbering of internal nodes

 d dry run to set custom defaults: remember all other options in this

 invocation for use with the following invocations in this session

 (with no other options, the built-in defaults are restored)

 D dry run to show the current custom defaults

 i when plotting subtrees that branch at the same level, plot small

 subtrees last, and equally sized non-leaf subtrees sorted according

 to their decreasing numeric code; this option also inverses the

 plot order of leaves that branch at the same level

 g n use alternative ASCII glyph set 1 or 2 for plotting trees (has only

 effect under 'program set unicode -' or 'psu-')

 k condensed output (shorter branches)

 K n truncate terminal names (to a minimum of n characters, n > 0) when

 they would exceed the specified width (option 'W') for plotting

 n label the terminals with their numeric code (their sequential

 number in the data matrix; see option 'a' for more information)

 f fname write output also to file fname (append mode by default)

 o modifies option 'f': use overwrite mode, not append mode

 r show the trees as fully resolved, using a further undefined

 minimal-score resolution of polytomies

 s sort terminals that branch at same level according to their

 increasing numeric code (default: ascending alphabetical order of

 terminal names)

 S silent (suppress summary statement at start of output)

 t interpret scopes that follow as trees to include; cannot be

 combined with option 'T'; this is the default interpretation of

 scopes

 T interpret scopes that follow as trees to exclude; cannot be

 combined with option 't' or with default scopes

 W n maximum width (in characters) of a single line (beyond this, the

 tree is broken into subtrees); use -1 for the width of the current

 window (default), 0 to turn off this feature (valid values 20 -

 5000)

anagallis version 1.02a (27 May 2020) documentation - 62/65

> Argument

 scopes one or more tree scopes, defaults to the current tree)

Scopes and options may be intermingled. When no scopes are present, the current

tree is shown.

Default order of subtrees within a set of subtrees that branch at the same level

is as follows: subtrees with less terminals are shown first; equally sized

non-terminal subtrees are sorted by their increasing numeric code (their

sequential order in the dataset). Terminals are shown in increasing alphabetical

order.

Option 's' can be used to sort terminals that branch at the same level according

to their increasing numeric code.

Option 'i' inverses ordering of subtrees that branch at the same level: smaller

subtrees are plotted last, equally sized non-leaf subtrees are sorted according

to their decreasing numeric code, and terminals either according to decreasing

numeric code of the terminals (option 's' specified) or descending alphabetical

order.

The sequential numeric labels of the inner nodes start from one more than the

number of terminals. The sequence is determined using the in-order traversal of

the complete tree with the default ordering of subtrees that branch at the same

level, and starting from 1 more than the number of terminals. These labels keep

being used when changing the default ordering.

--

Command 'trees show write' (tshw) [adDeforRsStTuv] <scopes>

> Write trees in parenthetical notation.

> Options:

 a label the terminals with their names (default: label them with

 their numeric code, their sequential order in the dataset)

 d dry run to set custom defaults: remember all other options in this

 invocation for use with the following invocations in this session

 (with no other options, the built-in defaults are restored)

 D dry run to show the current custom defaults

 e str str must be 'ana' or 'tnt'; write the trees(s) as a readable

 statement for anagallis (ana) or TNT (tnt)

 f fname write output also to file fname (append mode by default)

 o modifies option 'f': use overwrite mode, not append mode

 R add a space between all tree elements, not just between terminals

 r show the trees as fully resolved, using a further undefined

 minimal-score resolution of polytomies

 s sort terminals that branch at same level according to their

 increasing numeric code (default: ascending alphabetical order of

 terminal names)

 S silent (suppress summary statement at start of output)

 t interpret scopes that follow as trees to include; cannot be

 combined with option 'T'; this is the default interpretation of

 scopes

 T interpret scopes that follow as trees to exclude; cannot be

 combined with option 't' or with default scopes

 u modifies r: use curly braces for unsupported nodes; no effect for

 TNT export (see option 'e')

 v verbose (include tree scores in output); no effect for TNT export

 (see option 'e')

> Argument

anagallis version 1.02a (27 May 2020) documentation - 63/65

 scopes one or more tree scopes, defaults to the current tree)

Scopes and options may be intermingled. When no scopes are present, the current

tree is shown.

By default only supported nodes are shown. When such trees are used as input for

anagallis later on, any polytomies that may occur will at that time be

internally resolved using a further unspecified criterion. As a consequence, the

reported scores may then be higher than the scores for the original trees. This

can be avoided with option 'r': the trees are then written as they are

internally resolved. Using such trees as input for anagallis later on will then

restore the original internal resolution of any polytomies that may occur. As a

result, reported tree scores will then be identical to the tree scores of the

original trees.

By default space is only added between terminal names. With option 'R' extra

space is added such that all tree elements (parentheses and terminals) are

separated by a space.

--

TNT MODE COMMANDS

=================

These are only available in TNT mode (command 'program set tntmode =') and in

imported TNT files (command 'import tnt').

--

TNT mode command 'ccode' (c) [+-[]/!()=]

> Set/show character settings.

> Options:

 + set the character additive for the following scopes (see -)

 - set the character non-additive for the following scopes (see +)

 [activate the following scopes (see])

] inactivate the following scopes (see [)

 /n set prior character weight to weight n for the following scopes

 ! not supported

 (not supported

) not supported

 = not supported

Only the basic code specifiers are supported. The unsupported options are

recognized but then ignored. This enables anagallis to read TNT files that have

ccode statements with these options without flagging an error. Remember to start

counting characters from zero when using this command interactively. The changes

to character codes that are made in TNT mode persist when moving back to native

mode (and the other way around as well).

--

TNT mode command 'help' (h) [+*[]

> Show documentation for the commands that are available in TNT mode and in

 imported TNT files.

> Options:

 + not supported

 * show complete documentation of all commands

 [not supported

anagallis version 1.02a (27 May 2020) documentation - 64/65

By default, only a brief description is provided for each command. Option '*'

gives more information. Use 'help xyz' for help on command 'xyz'.

--

TNT mode command 'nstates' (n) [*&/]

> Set the TNT default datatype.

> Options:

 * not supported

 & not supported

 / not supported

Only 'nstates num n' and 'nstates n' are supported, with n an integer between 1

and 30. The number of available states depend on the value of n: for n up to 8,

ten states 0-9 will be available; for larger n, 30 states are available, coded

as 0-9 and a-t (case insensitive). This is not completely the same as in TNT,

but it does mostly ensure that sufficient states are available when importing

TNT files (in TNT, for n up to 8 there are 8 available states 0-7; for n from 9

up to 16 16 states, and from 17 onwards 32 states).

--

TNT mode command 'program set tntmode' (pst) [=-]

> Set/show if TNT mode is on.

> Options:

 = switch to TNT mode

 - switch to regular mode

--

TNT mode command 'quit' (q)

> Leave TNT mode, go back to regular mode.

--

TNT mode command 'tread' (t)

> Read trees in parenthetical notation (numbering of terminals starts from 0).

Read trees in parenthetical notation. This command just reads the basic format

of parenthetical trees: none of TNT's special features are supported or even

parsed correctly (they will flag an error). A further restriction is that

terminals must be identified using their sequential number in the dataset

(starting from 0), not by their names. When moving back to native mode,

numbering shifts back to counting from 1 onwards (and likewise the other way

around).

--

TNT mode command 'xread' (x) [=*-[!/+>]

> Read alphanumeric or dna data (no support for interleaved data).

> Options:

 = not supported

 * not supported

 - not supported

 [not supported

 ! not supported

 / not supported

 + not supported

 > not supported

anagallis version 1.02a (27 May 2020) documentation - 65/65

TNT's xread options are recognized but then ignored. This enables anagallis to

read basic character data from a TNT xread statement without flagging an error.

These character data remain available when moving back to native mode (works the

other way around as well). Interleaved input is not supported (an error will be

triggered).

--

