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CHAPTER 6

Parsimony and the problem of
inapplicables in sequence data

Jan E. De Laet

‘ ‘I don’t know what you mean by ‘glory,’ ’ Alice said. Humpty Dumpty

smiled contemptuously. ‘Of course you don’t–till I tell you. I meant ‘there’s a

nice knock-down argument for you!’ ’ ‘But ‘glory’ doesn’t mean ‘a nice

knock-down argument,’ ’ Alice objected. ‘When I use a word,’ Humpty

Dumpty said in rather a scornful tone, ‘it means just what I choose it to

mean–neither more nor less.’ ’

(Caroll 1872, chapter VI)

6.1 Introduction

About 10 years ago, Maddison (1993; see also

Platnick et al. 1991) drew attention to problems that

can arise in parsimony analyses when data sets

contain characters that are not applicable across all

terminals. Examples of such characters are tail

color when some terminals lack tails, or positions

in DNA sequences in which gaps are present.

Maddison (1993) examined various ways of coding

such characters for various parsimony algorithms

and concluded that no general solution was

available. Since then, the problem of inapplicables

has been rediscussed repeatedly (e.g. Lee and

Bryant 1999; Strong and Lipscomb 1999; Seitz et al.

2000), but Maddison’s conclusion still holds.

Farris (1983), focusing on regular single-column

characters as classically used in phylogenetic ana-

lysis, characterized parsimony as a method that

maximizes explanatory power in the sense that

most-parsimonious trees are best able to explain

observed similarities among organisms by inherit-

ance and common ancestry. This led De Laet (1997;

see also De Laet and Smets 1998) to formu-

late parsimony analysis as two-item analysis.

In this view, parsimony maximizes the number

of observed pairwise similarities that can be

explained as identical by virtue of common descent,

subject to two methodological constraints: the

same evidence should not be taken into account

multiple times, and the overall explanation must

be free of internal contradictions.

Here, I examine how this formulation can be

used to deal with the problem of inapplicables.

More specifically, I deal with the problem of

inapplicables in sequence data, a harder and more

general problem than most cases of inapplicability

that Maddison (1993) had in mind. The review of

parsimony analysis in the first section provides the

basis for discussing the analysis of sequence data

in the second section. The basic idea of the whole

chapter is to explore the ramifications of the con-

ceptual framework of Farris (1983) beyond the

realm of single-column characters. This was in part

prompted by the double observation that several

authors seem to be using isolated elements of that

paradigm when discussing methods for sequence

analysis (see, e.g., Frost et al. 2001; Simmons 2004),

while, at the same time, no coherent discussion of

those ideas as applied to sequence data is available.

6.2 Parsimony analysis as
two-item analysis

Some notes on terminology are appropriate first.

Take a simple term such as ‘autapomorphy’.
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Originally, autapomorphies were defined as ‘apo-

morphous features characteristic for a particular

monophyletic group (present only in it)’ (Hennig

1966, p. 90). In addition to this original meaning, a

more restrictive usage that reserves the term for

‘novelties that are coded as unique in a data set’

(Kluge 1989, p. 9) is widespread.

Consider the data set of Fig. 6.1 and its most-

parsimonious tree (out1 out2 (A ((B C) (D (E F)))))

(see Fig. 6.2). Under Hennig’s original definition,

the first seven characters all provide autapomor-

phies. As an example, character c4 has apomor-

phous state 0 for monophyletic group (B C), and

that state does not occur outside that clade. Under

the more restrictive definition only character c7 is

autapomorphic. Obviously, questions as to whe-

ther autapomorphies should be taken into account

or not when calculating the consistency index of a

data set on a tree (e.g. Yeates 1992) take an entirely

different meaning depending on the way in which

the term ‘autapomorphy’ is used.

Terminals
out1
out2
A
B
C
D
E
F

c2

0
0
0
1
1
1
1
1

c3

0
0
0
1
1
1
1
1

c4

1
1
1
0
0
1
1
1

c5

0
0
0
0
0
1
1
1

c6

0
0
2
1
1
2
2
2

c7

0
0
0
1
0
0
0
0

c8

1
0
0
0
0
0
0
1

c9

0
0
1
1
1
1
0
0

c10

0
0
1
0
0
1
1
1

c1

0
0
1
1
1
1
1
1

Characters

Figure 6.1 A data set with 10 unordered characters for eight terminals.

Terminals out1 and out2 are interpreted as outgroups.
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Figure 6.2 Parsimony analysis of the data of Fig. 6.1. (a) The most-parsimonious explanation of the data requires 14 steps. (b) To come to hypotheses of

synapomorphy and monophyly in the ingroup, the ingroup is rooted using the branch that leads to the outgroups (note that this procedure does not imply

such hypotheses outside the ingroup). (c, d) Two alternative optimal explanations of character c10 on the most-parsimonious tree. (e) A suboptimal

explanation of character c10 on the most parsimonious tree. (f) An optimal explanation of character c10 on a suboptimal tree.
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Paraphrasing Farris (1983, p. 8), I share Humpty

Dumpty’s disdain for arguing definitions as such.

Therefore I shall not discuss and evaluate the pros

and cons of various possible meanings of the terms

that I employ, nor indicate alternative terms with

identical or similar meanings. But as the above

example shows, it is important to make intended

meanings clear, so in this section I shall explicitly

point out my usages of terms.

At the same time, this process will provide an

interlocked set of concepts that will allow a clear

discussion of parsimony and inapplicables in the

next section, and help to distinguish terminological

issues from more substantial argument. To preempt

any objection as should the conclusions hinge on

major redefinitions of familiar terms, I shall indicate

how my usages are rooted in existing literature. This,

however, should not be taken to imply that these

usages are always strictly in line with those refer-

ences: whenever some existing, term is close enough,

in spirit, to intended use (as would, e.g. Kluge’s use of

Hennig’s autapomorphy above) I shall adopt existing

terminology rather than propose a new term.

6.2.1 Characters and character analysis

Conceptually, a cladistic analysis consists of

two main activities (see, e.g., Rieppel 1988; de

Pinna 1991; Rieppel and Kearney 2002). The first

comprises empirical observation, leading to deli-

mitation of characters and character states, and to a

data set in which those characters are scored for the

terminals in the analysis. This is the activity of

perceiving similarity and coding it into characters

and data sets, to which I shall refer as character

analysis (Kluge and Farris 1969, p. 9–10; see also

Rieppel and Kearney 2002, p. 60). The second

activity takes data sets as input, identifies their

most-parsimonious hierarchic arrangment(s), and

uses the resulting cladogram(s) as a basis for phy-

logenetic inference. I shall refer to this as parsimony

analysis (Farris 1983, p. 10–12; see also later).

Character analysis and parsimony analysis stand

in a continuous relationship of reciprocal illumi-

nation, at different levels (e.g. Rieppel 2003, p. 182;

see also Hennig 1950, p. 26). As an example, the

selection of terminals that will be included in a

data set is in part guided by existing phylogenetic

hypotheses. Likewise, empirical work that results

in new characters that are added to data sets can

lead to cladograms with new or refined hypoth-

eses of phylogenetic relationships. These, in turn,

can point to characters that are highly incongruent

with the general pattern and that may therefore be

worth additional scrutiny. If an empirical basis can

be found for a reinterpretation of such characters

or their states, the data set can be adapted

accordingly (see, e.g., Farris 1983, p.10).

At a given point in this process of continuous

refinement, consider an individual character such

as c4 in the data set of Fig. 6.1. From the point of

view of character analysis this character is a state-

ment about a feature that comes in two states,

coded 0 and 1, such that state 0 is observed in

terminals B and C and state 1 in all other terminals.

Theoretically, such a character expresses the hypo-

thesis that the observed feature carries evidence on

the genealogical relationships among the taxa that

are involved. This directly limits characters and

character states for phylogenetic analysis to fea-

tures that are inheritable. A thought-provoking

discussion of this seemingly trivial observation can

be found in Freudenstein et al. (2003).

Beyond this, however, little more specific can be

said other than that a character state as observed in

different terminals ‘must be sufficiently similar to

be called the same [ . . . ] at some level of taxonomic

generality’ (Kluge 1997a, p. 89; the quote refers to

derived states but the statement is valid in gen-

eral), an observation that also holds for the char-

acter as a whole (see, e.g., Platnick 1979, p. 542;

Jenner 2004, p. 301). For morphological and ana-

tomical features, the criteria of composition, con-

junction, ontogeny, and topography provide

perspectives that can serve to evaluate if such

sufficiency holds in particular cases (Kluge 1997a).

Of those, topography or topological relationships

are often considered to be the fundamental criter-

ion (e.g. Rieppel 1988; de Pinna 1991, Hennig 1966,

pp. 93–94; see also Remane 1952, pp. 31–66).

As discussed extensively by Rieppel and

Kearney (2002, in the context of anatomy; see also

Jenner 2004), care must be taken to give similarity

statements as expressed in characters an observa-

tional basis. In order to do so one has to rely,

however, unavoidably on background knowledge,
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and there is in principle no limit to the degree of

background knowledge that can be incorporated in

a character (Rieppel and Kearney 2002, p. 265). So

even in this specific and restricted context of

erecting character hypotheses for cladistic analysis,

the concept of similarity unavoidably retains some

elusiveness. This notwithstanding, similarity

assessments as expressed in characters and their

states, in the theoretical framework as just dicus-

sed, are the empirical basis on which further

phylogenetic inference is built.

6.2.2 Single-character phylogenetic inference

If no other comparative data were available for the

terminals that are involved, a character such as c4

would constitute a data set on its own. It is a useful

exercise to subject such a minimal data set to

parsimony analysis. Within the constraint of

terminal sampling, this leads to the following

inferences: (1) the feature arose in a common

ancestor of these terminals, from which they

inherited it; (2) differentiation into two states

ocurred at a later stage; (3) for each state, the

terminals with that state are only connected

through ancestors that have that same state. These

inferences do not yet include a polarity statement

for which state is considered apomorphic and

which plesiomorphic.

The apomorphy/plesiomorphy pair of terms is

defined as follows: for a given evolutionary

transformation, the condition or state from which

the transformation started is plesiomorphic or pri-

mitive and the condition after the transformation

apomorphic or derived (Hennig 1966, p. 89). As dis-

cussed by Hennig (1966, p. 93), coming to an

hypothesis of features that are involved in such a

transformation on the one hand and deciding on

the evolutionary direction of such a transformation

on the other are entirely different questions. The

inclusion of outgroups in data sets is arguably the

most general and least assumption-laden way to

address the latter question.

Roots and outgroups

In general, when studying the phylogenetic rela-

tionships among a group of terminals, one

assumes that these are part of a monophyletic group

at some level of inclusiveness, meaning that they

share a common ancestor that they do not share

with terminals outside that group (Hennig 1966,

73–74; see Farris 1991 for a review of this and

related terms). The terminals that are assumed to

be part of the monophyletic group are called

ingroup terminals and are collectively referred to as

the ingroup. Terminals outside that group are

called outgroup terminals or outgroups for short.

When outgroups are included in a data set,

they can be used to root the ingroup after the

globally most-parsimonious arrangements of the

data have been identified (Farris 1972, p. 657; see

Figs 6.2a and 6.2b for an example). In the ingroup,

hypotheses of relative apomorphy and plesio-

morphy and of the direction of transformations

then directly follow (Farris 1982a; see Figs 6.2c

and 6.2d for some examples). This is the proce-

dure that is now almost universally used to root

ingroups and polarize characters, and it is mostly

referred to as the outgroup method or the outgroup

criterion (see, e.g., Farris 1979, p. 511). Confus-

ingly, these and similar labels were also used in a

series of papers in the 1980s for a series of

methods of prior character polarization that are

fundamentally different and mostly no longer in

use. A historical account and a discussion of these

methods can be found in Nixon and Carpenter

(1993). The precise way in which hypotheses on

character polarity come about does not affect the

argumentation in this paper, so without loss of

generality the discussion is restricted to out-

groups.

In a data set that has only one character, as

above, the general use of outgroups as just

described becomes simplified because the best

tree for the data set coincides with the structure

of its single character. In the above example, the

outgroup hypothesis could be the assumption

that terminals A through F (the ingroup) share a

most recent common ancestor that is not shared

with terminals out1 and out2 (the outgroups).

Observing that state 1 of character c4 is present

in the outgroups as well as in the ingroup, it

follows that state 1 is plesiomorphic in the

ingroup; that state 0 is apomorphic in that same

group; and that (B C) is a monophyletic subgroup

of the ingroup.
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Outgroups do not always lead to such unam-

biguous single-character inferences. An example

is character c6, where (A D E F) and (B C) could

both be monophyletic; or, alternatively, either

could be paraphyletic with the other mono-

phyletically nested in it. In addition, contra-

dictions can arise between a character hypothesis

and the outgroup hypothesis, even with binary

characters. An example is character c8: the two

following statements, derived from the character,

contradict the outgroup hypothesis: terminals

out1 and F are only connected through ancestors

that have state 1; the other terminals are only

connected through ancestors that have state 0.

Such cases are mostly but not necessarily inter-

preted to mean that the hypothesis of ingroup

monophyly is incorrect. In general, nothing more

can be said other than that the data do not

support the prior assumption of ingroup mono-

phyly (Farris 1972, p. 657), an observation that is

also consistent with the alternative interpretation

that the data are wrong. Neither issue addressed

in this paragraph affects the argumentation of

this paper.

Premises

Obviously, the above conclusion of monophyly for

(B C) is conditional: it depends on the correctness

of the outgroup hypothesis, on the correctness of

the similarity assessments that led to character c4

and its coded states, and on the correctness of

several other, hidden, assumptions that remained

unexpressed (such as absence of reticulate evolu-

tion). So, it would be more precise to say that (B C)

is a putative monophyletic group, or a presumed

monophyletic group, or that B and C are hypo-

thesized to be monophyletic, each time conditional

on the premises stated above (see Farris 1983, p. 13

for a similar use of the term ‘putative’). Below, I

shall use such verbose formulations only when

confusion could arise otherwise, or when I wish to

stress the difference between hypothesis or infer-

ence on the one hand and true historical account

on the other. For the latter I shall then use the

convenient adjective ‘true’, following existing

practice (see, e.g., Farris 1983, p. 12), while obser-

ving that the philosophical problems that sur-

round the notion of truth (see, e.g., Boyd 1991) do

not affect this usage. The same applies to some

other terms that I already have used: outgroup,

apomorphy, and plesiomorphy are defined in

terms of phylogenetic history but are often used to

refer to just a hypothesis about that history.

Hennig (1966, p. 89) introduced the terms sym-

plesiomorphy and synapomorphy to decribe the pre-

sence of plesiomorphies and apomorphies among

terminals. As above, these terms are defined with

respect to true evolutionary history, but are often

used to refer to inferences as well. Such context-

dependent shifts in meaning of these and similar

terms are widespread in the literature, Hennig

(1966) being a prime example. Related to this,

when considering a transformation series such as

a! a 0, Hennig (1966, pp. 88–89) sometimes refer-

red to a and a 0 as ‘character conditions,’ sometimes

as ‘special characters’ and sometimes even just as

‘characters.’ Combined with context-dependent

meanings of terms, such use of different terms for

the same thing, with meanings that often differ

from current usage, can make it hard to under-

stand Hennig’s writings. This is even more pro-

blematic because Hennig used an argumentation

scheme to order and polarize characters that is

very different from current practice. In the above

example, Hennig referred to a and a 0 as characters

‘in the sense that they distinguish their bearers

from one another’ (Hennig 1966, p. 89). At the level

of character analysis they are, in current usage, just

character states.

When used conditionally, the precise meaning of

terms such as synapomorphy and plesiomorphy in

particular cases can drastically change according

to the exact conditionals that are used or implied.

Consider, for example, isolated character c9 and

the outgroup hypothesis. In that case the presence

of state 1 in terminals A, B, C, and D is a (putative)

synapomorphy compared to the presence of state 0

in terminals out1, out2, E, and F, which is a

(putative) plesiomorphy. On the other hand, when

considering the whole data set of Fig. 6.1 and its

most-parsimonous tree (Fig. 6.2b), the presence of

the same character state 1 in the same terminals A,

B, C, and D is now a (putative) symplesiomorphy

compared to the presence of state 0 in terminals E

and F, which has become a (putative) synapo-

morphy. The presence of state 0 in the outgroups
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remains a (putative) symplesiomorphy. More

interestingly, the presence of apomorphic state 1 in

its original form (terminals A, B, C, and D) and in

its more derived form (terminals E and F) is now a

putative synapomorphy for terminals A–F.

6.2.3 Homology, the Hennig–Farris auxiliary
principle, and parsimony analysis

A crucial assumption in the above interpretation of

a single character is Hennig’s auxiliary principle,

stating ‘that the presence of apomorphous char-

acters in different species . . . is always reason for

suspecting kinship [i.e. that the species belong to a

monophyletic group], and that their origin by

convergence should not be assumed a priori’

(Hennig 1966, p. 121; square brackets present in

original). In this quote, the term ‘character’ refers

to a ‘special character’ (Hennig 1966, p. 89), which

is a character state as used in this chapter, whereas

an apomorphous (special) character refers to a

special character that ‘can certainly or with rea-

sonable probability be interpreted as apomor-

phous’ (Hennig 1966, p.121), i.e. an hypothesis of

apomorphy or a putative apomorphy; monophyly

is used in its true historical meaning.

Without this principle, one could equally well

assume that, for example, state 1 of character c5 of

Fig. 6.1 arose multiple times. As an example, on the

most-parsimonous tree (Fig. 6.2b) state 1 could have

arisen a first time in the branch that leads up to

terminal D, and a second time in a common ances-

tor of E and F that is not a common ancestor of D.

Under this interpretation, the shared presence of

1 in E and F would be interpreted as evidence for

monophyly of clade (E F), to the specific exclusion

of terminal D, even if D has the same state.

However, given that the delimitation of char-

acter c5 is grounded in empirical observation, this

is not a very plausible interpretation of the char-

acter. Indeed, if any empirical evidence were

available that state 1 as present in terminal D is not

sufficiently similar to state 1 as found in terminals

E and F to be called the same at some level of

generality, these terminals would not have been

assigned the same numeric state code to begin

with. Since this was not the case, preferring the

second interpretation over the first amounts to

discarding some of the evidence that bears on the

problem at hand (viz. the perceived similarity

between terminal D on the one hand and terminals

E and F on the other. The remaining evidence

(viz. the perceived similarity between E and F)

then supports monophyly of E and F to the

exclusion of D.

Homology should be presumed in the absence of

evidence to the contrary

Hennig’s formulation of his auxiliary principle,

quoted earlier, is logically inconsistent because it

can lead to internal contradictions: if the presence

of presumed apomorphies is always to be a reason

for suspecting true monophyly (first part of the

principle), then it is not simply sufficient that

multiple, convergent, origins of that state should

not be assumed a priori (second part). This would

still leave open the possibility that some terminals

with the presumed plesiomorphic state obtained

that state through a reversal. In that case, the

group of all terminals with the presumed apo-

morphic state would no longer be truely mono-

phyletic, which contradicts the first part. So that

first part by logical necessity requires an additional

statement that the origin of presumed plesiomor-

phies should not a priori be interpreted as reversals

(for characters with more than two states, a similar

statement is required for each state). As an exam-

ple, without this addition a character such as c5

could be taken as evidence for, e.g., a mono-

phyletic group (A D E F) because it is not pre-

cluded that state 0 in terminal A arose as a reversal

within that clade. In this interpretation, state 0 as

present in terminal A would be derived relative to

state 1 as present in terminals D, E, and F.

Such additional statements are implicit in Farris’

(1983, p. 8) formulation of Hennig’s auxiliary

principle: ‘homology should be presumed in

absence of evidence to the contrary’, where

homology refers to similarities among organisms

that have arisen historically through inheritance

from a common ancestor, irrespective of these

similarities being apomorphic or plesiomorphic.

More explicit discussions of the necessity, in

parsimony analysis, of explaining plesiomor-

phic similarities as due to common descent

can be found in Farris et al. (1995, p. 215) and
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Farris (1997, pp. 132–133). I shall therefore refer to

the auxiliary criterion in its logically consistent

form as the Hennig–Farris auxiliary principle.

When, as above, the Hennig–Farris auxiliary

principle is applied to single–character data sets, it

can be interpreted as a condition that makes the

apomorphic state by necessity mark a true mono-

phyletic group: the state arose only once and never

reverted. That group will be present on any tree

that requires only a single origin for that state,

which is in line with Farris’ (1983, p. 12) observa-

tion that grouping by true synapomorphy would

have to behave exactly as parsimony, in the sense

that it would lead to preference for the tree(s) on

which no homoplasy is present (homoplasy being a

point of similarity among organsims that cannot be

explained by inheritance and common descent on

a particular tree; Farris 1983, p. 18; see also below).

These are, by definition, the shortest trees possible,

so they are also most parsimonious trees.

Parsimony and the Hennig–Farris auxiliary principle

In practice, however, one is constrained to work

with actual observable traits of organisms rather

than with true historical synapomorphies. Char-

acter codings of such traits seldom if ever capture

all true evolutionary transformations, let alone

their order, as exemplified by the presence of

homoplasy in all but the smallest and simplest

data sets (note that absence of homoplasy in such

data sets would hardly justify the conclusion that

all relevant transformations have been captured—

absence of evidence is not evidence of absence).

This led Farris (1983, p. 17–19; see also Farris and

Kluge 1986, p. 300; Farris 1986, pp. 15–16) to a

general characterization of parsimony analysis in

terms of a methodological principle that is funda-

mental to science in general: maximization of

explanatory power or conformity between obser-

vation and theory. More specifically, the observa-

tions are the similarity statements as coded in

characters, and the theory is that these similarities

have arisen through inheritance and common

descent. Most-parsimonious cladograms are then

preferred because they are the trees on which the

greatest amount of such observed points of simi-

larity among organisms can be explained by

inheritance and common descent (contra Grant

and Kluge 2004, p. 29). As such they provide the

best explanation of the observations on account of

the theory.

Note that, at this level of analysis, characters and

their states can indeed be treated as simple

observations, even if, as discussed above, they are

complex theories or hypotheses on their own.

Likewise, little confusion arises if the presence of

the same character state of a given character in two

terminals is simply called an observed point of

similarity between those two terminals. Such usa-

ges of these terms can be found, for example,

throughout Farris (1983).

Similarities as coded in characters can very well

be true homoplasies rather than true homologies.

Likewise, it cannot be ruled out that character

similarities that can be explained as homologies on

most-parsimonious cladograms are true homo-

plasies instead, even when using single-character

data sets as above. Combined with the observation

that parsimony minimizes putative homoplasy,

such observations are sometimes taken to mean

that it is an assumption of parsimony analysis that

homoplasy is rare in evolutionary history. How-

ever, even if rarity of homoplasy may be a suffi-

cient condition to prefer most-parsimonious trees

(see, e.g., Felsenstein 1981), it is definitely not a

necessary condition.

Consider a data set for terminals out, A, B, and C

where 10 characters support clade (B C) and just

one character supports clade (A C) (this example

and discussion is based on Farris 1983, pp. 13–14,

see also p. 12, pp. 18–19). If clade (A C) is genea-

logically correct, then the 10 characters that sup-

port (B C) are (true) homoplasies; if, on the other

hand, clade (B C) is genealogically correct, then the

single character that supports (A C) is a (true)

homoplasy. These simple observations point out

an interesting asymmetry in the relationship

between characters and genealogies: a given gen-

ealogy implies that characters that contradict this

genealogy are homoplasious but requires nothing

concerning characters that do not contradict the

genealogy. Now assume that true homoplasy is so

abundant that only one out of those 11 characters

has escaped its effects. Under the assumption that

this one character can equally well be any char-

acter in the data set, a simple statistical argument
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leads to preference for clade (B C): the probability

that this single historically correct character sup-

ports this clade is 10 times higher than the prob-

ability that it supports (A C). Thus it is seen that

even under extremely high levels of homoplasy

most-parsimonious trees can still be the best phy-

logenetic hypotheses one can make on the basis of

the available data, even if some of the putative

homologies may be true homoplasies instead.

The underlying assumption of the above con-

clusion is best stated in the negative: absence of

any assumption about the distribution of homo-

plasies in data sets. In a statistical framework, this

can be understood as the use of an uninformative

prior. Obviously, one can postulate distributions of

homoplasy such that the most-parsimonious trees

will no longer be the best bets. Such distributions

are typically derived from stochastic models of

sequence evolution (see, e.g., Felsenstein 1978a;

Huelsenbeck and Lander 2003). The mere fact,

however, that such distributions can be postulated

does not by itself invalidate parsimony analysis as

a method to analyze empirical data. Indeed, such a

conclusion would crucially hinge on the realism or

plausibility of the underlying stochastic models

(and not on their simplicity, as Huelsenbeck

and Lander 2003 seem to suggest). Farris (1983,

pp. 14–17, p. 12; see also Farris 1999) amply dis-

cussed these issues and found the models that

were in use at that time greatly lacking in realism.

Stochastic models of sequence evolution have

dramatically increased in complexity since then

(see Felsenstein 2004 for a review), but they still

seem mostly inadequate to model even small-sized

real data sets (D. Pol, personal communication).

Therefore, Farris’ discussion and conclusions

remain as valid and to the point as they were more

than 20 years ago.

Considering all this, the Hennig–Farris auxiliary

principle can be phrased as the following rule for

erecting character hypotheses and interpreting

their optimizations on trees: ‘features that on the

basis of empirical evidence are deemed sufficiently

similar to be called the same at some level of

generality should be treated as putative homo-

logues in phylogenetic analysis (even if they may

be true homoplasies instead).’ In combination with

the principle of maximizing explanatory power,

this makes similarity-based statements of putative

homology the centerpiece of phylogenetic infer-

ence: most parsimonious trees are trees on which

the greatest amount of putative homology state-

ments that return from character analysis can be

explained as due to inheritance and common

descent, and such trees are the best available

phylogenetic hypotheses for the terminals at

hand, whether or not the individual similarity

statements or their explanations are historically

correct.

As just discussed, the premises under which this

holds are best stated in the negative: complete non-

reliance on specific premises regarding correla-

tions of evolutionary rates within and across

characters and lineages. As such, parsimony ana-

lysis can be considered the most general method

for phylogenetic analysis that is available. Tuffley

and Steel (1997; see also Steel and Penny 2000) and

Goloboff (2003) have examined similar but less

extreme positions of agnosticism with respect

to the details of evolutionary processes, using

stochastic modeling. In both cases the most-

parsimonious tree(s) are the best phylogenetic

hypotheses, reinforcing the above conclusion.

6.2.4 Quantifying and maximizing homology

Given a tree and a data set such as in Fig. 6.1,

Farris (1983) did not directly quantify the amount

of points of similarity that can be explained by

common descent and inheritance on that tree.

Instead he used, as a relative measure, the mini-

mum number of independent statements of

homoplasy that are required on that tree. This

works because an instance of homoplasy is present

on a tree whenever a point of similarity as

expressed in a character cannot be explained as

homology on that tree (Farris 1983, p. 18).

So, when comparing two trees, the tree with the

lower level of homoplasy will have the greater

amount of similarity that can be explained as

homology, and hence the greater power to explain

the data on account of the theory. In practice, most

parsimony programs calculate the minimum

number of steps that are required, which, for

a given character, differs from the minimum

number of independent statements of homoplasy
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by a constant factor. As a result, the same ranking

of trees is obtained. Several points are worth

elaborating here.

Inner-node state assignments and the requirement

of internal consistency

First, whether or not a particular pairwise simi-

larity as coded in a character can be explained as a

homology on a particular tree does not just depend

on the structure of the tree and on the state dis-

tribution of the character that is involved, but also

on assumptions that are made about the character

states that are present at the internal nodes of

the tree.

Take character c10 of the data set of Fig. 6.1 and

the most-parsimonious tree for that data set (Fig.

6.2b). Representing a pairwise similarity that is

expressed as the presence of a same state i of a

character in two terminals X and Y as Si(X Y), or,

equivalently, Si(Y X), the similarity among term-

inals A and D as coded in c10 is S1(A D). With

inner node state assignments as in Figs. 6.2c or

6.2e, this pairwise similarity cannot be explained

as a homology because independent derivations of

state 1 from state 0 are involved. On the other

hand, with state assignments as in Fig. 6.2d, that

same similarity can be explained as a homology.

Similarly, S0(out1 B) can be explained as a homo-

logy in Fig. 6.2c but not in Figs. 6.2d and 6.2e. In

general, a pairwise similarity Si(X Y) can be

explained as a homology on a tree when all nodes

that connect X and Y have been assigned that same

state i; in that case, the statement is said to be

accomodated on the tree. In all other cases, it is a

homoplasy, and the statement is not accomodated

(only cases in which unique states are assigned to

inner nodes are considered in this paper; poly-

morphic inner nodes, as in Farris (1978a) or in

Felsenstein (1979), are left undiscussed).

The connection between the explanation of a

character and assignments of states to inner nodes

can be seen as a methodological constraint that

ensures that the set of all homology statements that

can be derived from a tree and a character state

distribution is free from internal contradictions (De

Laet and Smets 1998, pp. 374–376). Or, put posi-

tively, it ensures that the overall explanation is

logically possible or consistent. This, in turn,

makes the explanation of the character on the tree

logically capable of phylogenetic interpretation

(Farris et al. 2001b). For example, on this tree one

can explain either the similarity between A and D

(e.g. Fig. 6.2d) or the similarity between out1 and B

as a homology (e.g. Fig. 6.2c); one cannot possibly,

however, simultaneously explain both similarities

as homologies because they are mutually exclus-

ive. This logical requirement of non-contradiction

is also met in maximum likelihood methods that

integrate over all possible sets of inner-node state

assignments, such as that of Felsenstein (1981). It is

not met in quartet and triplet methods (De Laet

and Smets 1998). Pairwise similarity statements

that can simultaneously be explained as homology

on a given tree will be referred to as (mutually)

compatible statements.

When the terminals of a tree are labeled with the

observed states of a particular character and the

inner nodes have been assigned character states as

well, the tree can be cut into a number of parts in

which all nodes have the same state, and such that

neighboring parts have different states. I shall refer

to such parts as regions. There is a straightforward

connection between number of regions and num-

ber of steps: any boundary between two regions

implies a step, so the number of steps is one less

than the number of regions. By definition, all

similarities within a region can be explained as

homologies, while similarities across regions

are homoplastic. Because these regions are non-

overlapping and because homologies do not cross

the borders of such regions, the problem of quan-

tifying the amount of similarity of the character

that can be explained as homology on the tree can

be broken down easily into the smaller problem of

determining the amount of homology in such a

region. For the same reason, the different states of

a character can be treated independently under

those conditions.

Independence and the units of empirical

content of comparative data sets

A second issue is logical independence of pairwise

homology (and homoplasy) statements within

characters (Farris 1983, pp. 19–20, 21–22; De Laet

and Smets 1998, pp. 369–374; this is different

from logical dependence between characters, as
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discussed, e.g., in Wilkinson 1995, pp. 297–298).

Consider state 1 of character c10 as it returns from

character analysis. At that point, all its six pairwise

similarity statements can be interpreted as homo-

logies: S1(A D), S1(A E), S1(A F), S1(D E), S1(D F),

and S1(E F). Not all of these are independent

though: if, e.g., S1(A D) and S1(A E) can be inter-

preted as homologies, then, by necessity, S1(D E)

can be interpreted as a homology as well. In gen-

eral, if ni terminals have the same character state

for a given character, there are ni * (ni� 1)/2 dif-

ferent pairwise similarity statements that can be

made, but no more than ni� 1 of those can be

independent. Adding statements beyond this

number will introduce redundancy in the

description of the data. This maximum number of

independent pairwise similarity statements is at

the same time the minimum number of statements

that must be considered to deduce the complete

set: when removing statements from a largest set

of independent statements, there is no longer suf-

ficient information to generate all data.

Non-redundant descriptions. I shall call such max-

imal sets of independent pairwise similarity

statements smallest generating sets. The exact iden-

tity of the members of such sets does not matter,

the important points are completeness and absence

of logical dependencies. As an example, {S1(A D),

S1(A E), S1(A F)} and {S1(A D), S1(D E), S1(E F)} are

two different smallest generating sets for state 1 of

character c10; {S1(A D), S1(A E), S1(A F), S1(E D)} is

a generating set, but not a smallest one because not

all of its elements are independent. Next consider

how the pairwise similarities in a character state

can be explained on a particular tree with a par-

ticular set of inner-node state assignments, such as,

for example, in Fig. 6.2c. There are two regions

that have character state 1: isolated node A and

subtree (D (E F)). All similarities within a region

are homologies and all similarities across regions

homoplasies, so S1(D E), S1(D F), and S1(E F)

are homologies, while S1(A D), S1(A E), and S1(A F)

are homoplastic.

A non-redundant description of this can be

determined as follows. For each region that is

involved, establish a smallest generating set (in

general, a region with j terminals will have smallest

generating sets of cardinality j� 1). These sets non-

redundantly describe the homologies of the char-

acter state on the tree, and the total number of

independent statements that are accomodated is

the total number of statements in these sets. Then

pool these generating sets and augment the

resulting set to obtain a smallest generating set for

all similarities in the character state, without

reference to a tree. The added statements form a

maximal set of independent pairwise similarity

statements that are not accomodated. This proce-

dure establishes that the number of independent

accomodated homologies and homoplasies for

a given state add up to a number that is tree-

independent. As a result, minimizing the number

of independent statements of pairwise homoplasy

in a character state and maximizing the number of

independent statements of pairwise homology in

that same state are equivalent problems indeed.

Because independent homologies can be counted

one region at a time, this remains true when

summing over all states in a character, and/or over

all characters in a data set.

In this example, the first region (isolated node A)

has no similarities and therefore an empty smallest

generating set; {S1(D E), S1(E F)} is a smallest

generating set for the second region. Adding, for

example, homoplastic statement S1(A E) is suffic-

ient to fully describe the character state and its

explanation on the given tree. As an example,

given that S1(D E) is accomodated and that S1(A E)

is not accomodated, it follows that S1(A D) is not

accomodated either.

Explanation. When assessing how well a tree with

inner-node state assignments can explain a char-

acter state as due to inheritance and common

descent, the correct measure is the number of

independent accomodated pairwise similarities,

not the total number of accomodated pairwise

similarities. Consider a character in which 100

terminals have state 0 and another 100 state 1, and

two trees on which the first 100 terminals occur in

one region and the other 100 in two regions.

Assume that in the first tree, the first region with

state 1 has one terminal and the second 99; and

that, in the second tree, both regions with state 1

have 50 terminals. The total number of pairwise
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similarities in this character state is 99� 100/

2¼ 4 950, of which at most 99 are independent.

Summing over regions, in the first case a total of

0þ 4 851¼ 4 851 similarities are accomodated, in

the second case only 1 225þ 1 225¼ 2 450.

Yet in both cases, the same number of 98 inde-

pendent pairwise similarities are required for a

non-redundant description of the situation. Or,

conversely, in both cases only a single independent

pairwise similarity cannot be explained as a

homology. This is in direct agreement with the

observation that both cases can equally well

explain the observations on account of the theory,

which in this restricted case is possible historical

identity of state 1 through inheritance and com-

mon descent on the given trees with the given sets

of inner-node state assignments for the given

character. The total number of pairwise homo-

logies gives a different answer (the first tree is

considered about twice as good: score 4 851 vs.

2 450) because that number also depends on the

numbers of terminals that are present in each

region of a tree in which the state is homologous.

As these numbers do not feature in the theory

on account of which the data are explained, the

total number of accomodated similarities is not

suited to measure agreement between theory and

observation.

Weighting. An alternative way of viewing the

difference between all and independent pairwise

similarity statements is in terms of dynamic

weighting of similarity statements (see De Laet

and Smets 1998 for a similar discussion in the

context of triplet and quartet methods). More

particularly, if the weight that is assigned to an

independent accomodated similarity statement in

a given region is calculated dynamically as the

total number of statements in that region divided

by the number of independent statements in that

region, then the total number of unweighed

accomodated statements equals the number of

weighted independent accomodated statements.

This weighting scheme is highly unnatural and

hard if not impossible to defend, which just

reinforces the conclusion of the previous para-

graph. But it also raises the general question of

weighting.

I have been assuming equal weighting of simi-

larity statements throughout, but the principle of

parsimony as discussed here does in itself not

prescribe that all parts of the data be equally

weighted. Farris (1983, p. 11) discussed this issue

at the level of differential weighting of entire

characters and characterized his preference for

equal weighting as a stance of ignorance: in the

absence of any convincing reason for doing

otherwise, all characters in a data set are treated as

if they provide equally cogent evidence on phy-

logenetic relationship. The same reasoning applies

at the level of the independent similarity state-

ments that make up characters.

Algorithms such as Farris (1970; additive char-

acters) or Sankoff and Rousseau (1975; step

matrices) can be seen as methods that apply dif-

ferential weighting within characters. Such differ-

ential weighting is defined in terms of

transformations, not in terms of similarities:

transformations between different pairs of char-

acter states can receive different weights. This may

seem problematic for the current approach because

the simple equivalence of minimizing homoplasy

and maximizing homology, as discussed above, in

general only holds when all transformations and

all unit homologies are weighted equally. How-

ever, differential weighting as in Farris (1970) and

Sankoff (1975) can also be characterized in terms of

similarities that are hierarchically nested. A full

discussion of this issue is beyond the scope of this

review.

A methodological requirement. The unit of evident-

ial value of a data set on a tree that arises from this

discussion is an independent accomodated pair-

wise similarity statement. Likewise, independent

pairwise similarity statements are the currency in

which the empirical content of a data set is mea-

sured. This ultimately permits to interpret the

preference for independent accomodated state-

ments (versus all accomodated statements) as a

methological requirement when maximizing the

number of pairwise similarity statements that can

be explained as homology: it enforces that each

unit or quantum of empirical content of a data set

is considered precisely once. Note that, in itself,

this does not amount to equal weighting: whether
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or not all quanta of comparative empirical content

should receive the same weight is an entirely dif-

ferent question.

Again, this methodological constraint is not met

in quartet and triplet methods (De Laet and Smets

1998). Likewise, it is not met in methods that base

the inference on a square matrix of pairwise dis-

tances among terminals, such as neighbor joining

(Saitou and Nei 1987), for the simple reason that

the required information to do so is not present in

such matrices. To be sure, neighbor joining can in

principle operate directly on character state data

(Saitou and Nei 1987, p. 410), but such data sets are

mostly reduced to square distance matrices first. In

maximum likelihood methods such as Felsenstein

(1981), the constraint is met. The difference with

parsimony analysis is that in such methods the

explanation of a similarity statement on a tree is

based on integration over all possible inner-node

state assignments, using stochastic models of

character evolution and best-scenario branch

lengths (see, e.g., Steel and Penny 2000 and

Goloboff 2003 for a discussion). As seen above,

when looking for best trees, parsimony analysis

evades uncertainty as to the true historical status

of a similarity statement that can be explained as a

homology on a tree at an entirely different level,

thus enabling it to remain largely agnostic about

details of the processes of character evolution.

Maximizing the amount of homology

Given a data set of characters, one has to identify

the tree or trees on which the highest number of

independent compatible pairwise similarity state-

ments can be explained as homology. This

involves an optimization at two different levels.

First, which is the highest number of such

homology statements on a given tree? Second,

given a procedure to solve the first problem,

which is (are) the tree(s) on which this number is

maximal?

The first problem can be tackled one character at

a time because there are no logical interactions

among the explanations of different characters

(this is a fundamental assumption that is not met

when inapplicables are present). Within a char-

acter, though, it cannot be tackled one state at a

time because the explanation of any given state

imposes methodological constraints on allowed

explanations of the other states. As discussed

above, such constraints are met when inner-node

state assignments are taken into account, in addi-

tion to the observed states at the terminal nodes.

Therefore, a crude solution for optimizing a char-

acter on a tree is to generate all possible sets of

inner-node state assignments and to count the

number of independent accomodated statements

for each (three different possibilities, on the same

tree, are illustrated in Figs. 6.2c–6.2e, with scores 5,

5, and 2). If the sets of inner-node state assign-

ments are generated in a clever enough order,

this can be improved using a branch-and-bound

mechanism.

However, a much more efficient approach is

possible, starting from the above observation that

the number of independent compatible homologies

and homoplasies for a character add up to a num-

ber that is tree-independent. As a result, a set of

inner node state assignments that minimizes inde-

pendent homoplasies also maximizes independent

homologies. Next, the minimum number of inde-

pendent homoplasies for a given character and a

given optimal set of inner-node state assignments

equals, up to a tree-independent constant, the

number of regions as imposed by the inner-node

state assignments, which in turn is one more than

the minimum number of steps in the character.

Therefore, algorithms that minimize the number of

steps in such characters can be used to maximize

homology. Examples are the algorithm of Farris

(1970) for binary characters and additive multistate

characters, or the algorithm of Fitch (1971; see also

Hartigan 1973) for unordered characters.

The second problem is illustrated in the two

trees of Figs 6.2b and 6.2f: even if the second tree

can explain some characters better than the first

tree (e.g. c10), the first tree is preferred because it

provides a better explanation of the data as a

whole. The problem of deciding whether a given

tree is an optimal tree for the data at hand is NP-

complete (Foulds and Graham 1982). Practically,

this means that in general the only way to find

the best tree(s) is the hard approach of examining

all possible trees that exist for the given terminals,

either explicitly or implicitly, by using a branch-

and-bound approach (for which see Hendy and
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Penny 1982). Unfortunately, the number of trees

grows so extremely fast as the number of terminals

grows (see, e.g., Felsenstein 1978b) that this

approach is only feasible for relatively small

numbers of terminals. Exactly how many terminals

can be analysed in this way depends on the

structure of the data set and on the computing

power and time that is available, but as a rule of

thumb it is somewhere between 15 and 25. So,

when dealing with increasingly larger numbers of

terminals, one is practically forced to restrict the

tree search to increasingly smaller subsets of all

possible trees, proportionwise. In doing so, heur-

istics such as branch swapping are used to make

sure that no or little computing effort is wasted

on trees that are manifestly not optimal (for a

broader discussion and some developments beyond

simple branch swapping see, e.g., Goloboff 1999;

Moilanen 1999; Nixon 1999; Moilanen 2001).

Both levels of optimization are logically inde-

pendent, even if they are in practice often tightly

integrated in heuristic approaches (see, e.g.,

Goloboff 1996b for examples). One could do a tree

search using any imaginable function that com-

putes a number from a tree and a data set, and,

heuristic uncertainty aside, the resulting trees

would be optimal according to that function.

Therefore, when comparing and evaluating differ-

ent methods, it is sufficient to examine the meaning

of the function used to evaluate any single tree.

6.2.5 Characters revisited

Summarizing this long introductory section,

observation-based pairwise similarity statements

are the fundamental statements of comparative

research. When searching for trees on which

the highest number of such similarities can be

explained as homologies, two methodological

requirements must be met: (1) the overall expla-

nation of the data must be free of internal contra-

dictions, which can be enforced by assigning, for

each character, states to inner nodes of the tree; (2)

the same piece of empirical content should not be

used multiple times, which translates into counting

only homologies that are logically independent.

From this point of view, a character that

describes the distribution of a number of states in a

number of terminals is just a convenient non-

redundant summary of elementary putative

homology decisions that are made, during char-

acter analysis, in all possible pairwise comparisons

of some observable characteristic in those term-

inals (see De Laet and Smets 1998, pp. 378–380; the

unhappy informal use of the term ‘essence’ does

not invalidate their discussion). In each such

pairwise comparison, the mere fact that the char-

acteristic is being compared entails the hypothesis

that at some level of generality it is historically the

same. At a lower level, the different states of the

character are hypotheses of alternative expressions

of the characteristic, each of which is also hypo-

thesized to be historically the same. As discussed

above, all such hypotheses are to be seen through

the lens of the Hennig–Farris auxiliary principle.

To clarify, consider some angiosperms and a

character that codes a floral structure that comes in

two forms, rounded (state 0) and square (1). The

fact that these two forms are coded as states of

the same character reflects the hypothesis that the

structures, despite the observed difference in form,

are homologous at a more general level. Mostly,

such an hypothesis is based on a combination of

criteria. As an example, when the development of

floral buds in different terminals is compared, the

meristem that gives rise to the structure could

originate in almost identical topological relation-

ships relative to other meristems. In addition, the

adult structures, whether round or square, could

share many anatomical and morphological simi-

larities. As a whole, the character then reflects the

higher-level prior hypothesis that the structure in

all these terminals is identical through common

descent and inheritance. Within the character, the

difference in general form (round vs. square) is

considered important enough to warrant recogni-

tion of two different states, reflecting the lower-

level prior hypotheses that the roundness and the

squareness of these structures can be explained as

identity through common descent and inheritance

as well.

The different roles of characters and character states

It has often been observed that there is a large

discrepancy between the formalized nature of

phylogenetic analysis once a data set has been
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constructed and the much more subjective deci-

sions that are involved in character analysis, when

it comes to deciding if observed features in two

terminals should be coded as the same state of a

character, two alternative states of a character, or

part of different characters altogether (see e.g.,

de Pinna 1991, p. 380). Pleijel (1995) argued that

this is especially relevant for the assumptions

regarding homology of states within a character

(are two such floral structures homologous, irre-

spective of their general form?). Contrary to

hypotheses of homology within states (is the

roundness of two round structures homologous, is

the squareness of square structures homologous?),

such higher-level hypotheses are never questioned

during subsequent phylogenetic analysis (Pleijel

1995, p. 312). As an example, consider character c9

of the data set of Fig. 6.1, and assume that state

0 codes the square and state 1 the round structure

of the above character. On the most-parsimonious

tree for these data (Fig. 6.2b), the squareness of the

structure that is observed in terminals out1 and out2

is not homologous to the squareness of the same

structure that is observed in terminals E and F, and

the initial lower-level hypothesis has to be revised.

Similar posterior revisions of the higher-level

hypothesis cannot be made because the homology

of round versus square structures has been hard-

coded in the analysis, precisely because they have

been coded as states of the same character. To

remove such hard-coded higher-level assump-

tions, Pleijel (1995) proposed to use absence/pre-

sence coding of character states, which is formally

identical to non-additive binary coding, a tech-

nique that stems from phenetics (see, e.g., Sokal

1986). Whether it is feasible or desirable to exclude

such assumptions from the analysis will be

examined below.

But whatever the answer, the use of absence/

presence coding as a means of doing so can lead to

internal inconsistencies in the phylogenetic expla-

nation of data, a result that is particularly relevant

for this paper because Pleijel (1995) advanced

absence/presence coding as a promising way to

deal with inapplicables. Consider the data set of

Fig. 6.3a and assume, without loss of generality,

that none of the character states codes for absence.

In the recoded version of Fig. 6.3b each column

stands for one character state of a character of Fig.

6.3a, with 0 coding for absence of that state and 1

for presence. When analyzing Fig. 6.3a, the three

trees of Fig. 6.3c are obtained (nine steps; loss of

two independent pairwise similarities). With the

recoded data, only one shortest tree is found, the

middle tree of Fig. 6.3c; the two other trees are

suboptimal by one step (18 vs. 17).

Pleijel (1995, p. 313) pointed out that, with

absence/presence coding, hypotheses concerning
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Figure 6.3 Absence/presence coding of character states aims to remove prior hypotheses of homology among states (Pleijel 1995) but can lead

to internal inconsistencies. (a) A dataset with characters that reflect nested hypotheses of homology as determined during character analysis

(characters unordered). (b) The characters of (a) with absence/presence recoding of character states. (c) The three most-parsimonious trees for (a).

With the data coded as in (b) only the middle tree is considered optimal. The two other trees are rejected even if they explain the data equally well

under acceptable hypotheses of homology that they imply.
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transformation series between the analysed states

will emerge as part of the results, but he remained

somewhat vague about the logical and technical

implications of this observation. As an example,

take the three recoded states of the original char-

acter c6, each with a perfect fit on the single most-

parsimonious tree for the recoded data. Because 0

stands for absence of the corresponding state, an

inner node that is optimized as 0 can be hypo-

thesized to have one of the two other states (other

possibilities exist but are not relevant for the

argument). Combining and summarizing all pos-

sible such optimizations of the three recoded states

of c6, and using the outgroup hypothesis, three

possible implied transformation series emerge from

the tree: 1 0! 2, 0! 1! 2, and 0! 2! 1. Each

of these has a perfect fit on the tree as well, and in

each case only two steps are required to explain

the state distribution. When doing the same

excercise for the groups of states as defined by the

other characters of Fig. 6.3a, all these other states

can be explained by postulating a total of only

seven steps (note that some of the implied trans-

formation series incorporate non-homology of sta-

tes as defined a priori; an example is character c4).

The middle tree of Fig. 6.3c is considered

the best tree for the recoded states because it has

the shortest length for the recoded data. But on the

basis of possible transformation series that emerge

as part of the analysis, one can construct a phylo-

genetic explanation of the data on that tree that

requires fewer steps. So, whatever the length of an

absence/presence recoded matrix on a tree means,

it definitely does not measure how well that tree

can explain the data phylogenetically under the

assumption that character states can transform into

one another, and maximization of phylogenetic

explanatory power under that assumption cannot

be the rationale for preferring trees that minimize

this recoded length. Indeed, analyzing the two

other trees in the same manner, they can also be

explained by postulating only nine steps (which

should not come as a surprise, as it was already

clear from the analysis of the data set of Fig. 6.3a

that the states could be grouped such that only

nine steps are required on those trees). Yet they are

rejected if the length of the recoded matrix is used

as an optimality criterion.

One step further, posterior groupings of states

may exist that reduce the total number of steps

below the number required by the groupings as

they come out of character analysis. An example is

presented in Fig. 6.4. As above, it can be assumed

without loss of generality that none of the states in

Fig. 6.4a codes for absence. When states 8–13

are grouped as in characters c5 and c6 of Fig. 6.4a,

the transformation series that are implied by the

optimizations of the recoded states on the best

tree require a total of five steps on the best tree. But

the alternative grouping as in Fig. 6.4b, implying

11 8! 13 and 10! 9! 12, can explain the

observed distributions of states 8–13 at only four

steps. This optimal implied grouping of states

obviously contradicts the empirical evidence on

the basis of which the original characters were

proposed. But then it is the aim of this approach to

remove such untestable assumptions (Pleijel 1995,

p. 312), and posterior acceptance of groups of

states as in characters c5 0 and c6 0 is just a logical

consequence. More precisely, recognition of such

transformation series follows from the notion that

hypotheses concerning transformation series

among the analysed states should emerge as part

of the results and from the general requirements

that the analysis should be logically capable

of phylogenetic interpretation and internally

consistent.

It does not require much imagination to see that

in practice this could easily lead to situations

where square floral structures of one angiosperm
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Figure 6.4 Absence/presence coding of character states, to remove

prior hypotheses of homology among states, can lead to surprising

optimal implied transformation series. (a) A dataset with six unordered

characters as they return from character analysis; the groupings of

character states in columns (characters) reflect nested hypotheses of

putative homology; the most-parsimonious tree is (out (A (B C))), which is

also the best tree when the data are recoded to remove prior assumptions

of homologies among states. (b) Alternative grouping of the states of

characters c5 and c6 that cannot be rejected on the basis of the

optimized recoded states. For this grouping, the transformation series

as implied by the optimized recoded characters provides a better

explanation of the data than the original characters.
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would a posteriori be considered homologous with,

for example, a type of root system as present in

another angiosperm, and the round floral struc-

tures of this other angiosperm to the root system of

the first. Most systematists would not hesitate to

reconsider homology within states on the basis

of a well-supported most-parsimonious tree (the

squareness of the floral structures in these term-

inals is not the same as the squareness of such

structures in those other terminals after all, despite

my prior assessment to the contrary), but in gen-

eral such reinterpretations across characters are

much more difficult to accept (darn, these flowers

are actually not flowers but modified root

systems!).

So, even if statements of homology among states

are untestable in the sense of Pleijel (1995), they

put bounds on the degree of reinterpretation of

character states one is willing to accept in the light

of incongruence in the data, and these bounds

reflect empirical evidence as obtained during

character analysis. Outright removal of such

bounds, as would seem to be a logical consequence

of using absence/presence coding as advocated by

Pleijel (1995), therefore amounts to throwing away

important relevant empirical data. As a work-

around, one could limit implied transformation

series to include only groupings of states that are

compatible with the results of character analysis.

But that actually amounts to giving up the premise

that prior statements regarding homology among

states should be removed from the analysis. And

as discussed above, absence/presence coding then

results in the same trees as obtained with regularly

coded characters, at least if the aim of the analysis

is to maximize explanatory power in a phyloge-

netic context.

Beyond single-column characters

On the other hand, it is not uncommon in character

analysis to find multiple possible interpretations

for features, which is not surprising given the role

of background knowledge as discussed earlier. As

an example, depending on the view one takes, the

vegetative region in some species of the angio-

sperm genus Utricularia (bladderworts) can be

interpreted morphologically as a shoot-like leaf, a

branched stem system without leaves, or a shoot

with stems and leaves (Rutishauser and Sattler

1989; a fourth, more complex, interpretation is also

provided). Similar problems abound when dealing

with fossils or when making comparisons across

very divergent groups. In both cases one often has

to deal with structures that cannot be easily

homologized across the terminals being compared,

which in turn often results in competing and

conflicting prior interpretations. In studies of

sequence data, this problem can come in the form

of different prior hypotheses about orthology and

paralogy of sequences (Fitch 1970) or in different

alignments for the same set of putative orthologs

(several examples of the latter case are discussed in

the second section).

In each such case, when characters are coded

according to just one of the competing interpreta-

tions, chances are that the chosen view will be

favored by the resulting trees simply because the

data have been exclusively interpreted as such to

begin with. As observed by Endress (1994, p. 401–

402), circular reasoning when dealing with such

ambiguously interpretable features can be over-

come by repeatedly testing all different possibi-

lities. Only this approach amounts to a sincere

attempt at falsification. Unfortunately, in formal

analyses and with current algorithms this is not

easy to achieve because the technical framework of

independent single-column characters does not

lend itself to simultaneous analysis of such alter-

native interpretations of the data in a logically

consistent and correct way.

A hard work-around would be to manually

construct and analyse as many data sets as there

are different combinations of different interpreta-

tions in different characters, which may be prac-

tically feasible when the number of such

combinations is not too large. The best phyloge-

netic hypotheses would then be the shortest trees

across all those data sets, and optimal homo-

logizations and details of transformation series

would emerge from those trees as part of the

analysis. The difference with absence/presence

coding of states is that, as above, the level of rein-

terpretation of states that one is willing to accept in

the light of incongruence is still bounded by the

results of character analysis. The difference with an

analysis of just one set of classic single-column
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characters is of a purely technical nature: these are

cases in which the a priori acceptable hypotheses of

homology among states cannot be expressed as a

simple series of independent single-column char-

acters. But the purpose remains maximization of

the number of independent pairwise similarities

that can be interpreted as identical through com-

mon descent and inheritance. From this point of

view, the next section can be seen as an attempt to

develop a formal and logically consistent method to

deal with the problem of multiple a priori acceptable

hypotheses of homology among states in the case of

putative homology statements within putative

orthologous sequences.

6.3 Parsimony analysis of
sequence data

When dealing with sequence data, it is not unusual

to find that putative homologous sequences have

different lengths in different terminals. Such

length differences are explained as the result of

indel events, insertion and/or deletions that

occurred in the course of evolutionary history. As

a consequence of indel events, two sequences that

are homologous as a whole will nevertheless con-

tain subsequences that are not homologous: with a

deletion, the resulting sequence misses a part of

the original sequence; with an insertion the

resulting sequence has a subsequence that was not

present before. In both cases, characters that

describe the subsequences that are involved will be

inapplicable in the other sequence.

For the purpose of phylogenetic analysis, it is

common practice to establish the positions and

sizes of indels by creating a multiple alignment

prior to tree evaluation and tree search, thus

turning the putative homologous sequences into a

sequence of single-column positional characters

that subsequently can be treated as a regular data

set (see Fig. 6.5a for an example). Each such posi-

tional character describes the state distribution of

the base that is found at that position of the

alignment, with gaps (coded as dashes in this

chapter) indicating inapplicability. As discussed

by Maddison (1993, p. 578), this makes sequence

data susceptible to the general problems that come

with inapplicables.

However, the approach of generating multiple

alignments prior to tree evaluation and tree search

is fundamentally insufficient as a general method

for analysis of sequence data, as will be discussed

below. As a consequence, the question of inapp-

licables in sequence data cannot be discussed in
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Figure 6.5 Three putative homologous sequences and two different approaches to evaluating them on the single unrooted tree for three terminals.

(a) First a multiple alignment is constructed to establish base-level positional correspondences (dashes indicate gaps); the resulting positional

characters are optimized using the algorithm of Fitch (1971), resulting in three substitutions (s) and one indel (i). (b) The unaligned sequences are

optimized directly on the tree using the algorithm of Sankoff (1975); in this example, two optimal reconstructions of the sequence at the inner node exist,

each at four steps; in each case, the optimal length imposes one or more optimal sets of positional correspondences.
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general at that level. It is argued that a general

method by necessity requires that unaligned

sequences be directly optimized on trees, using

algorithms such as Sankoff (1975) or Altschul (1989,

pp. 307–308). Such algorithms treat the unaligned

putative homologous sequences as one single

complex character, to which I shall refer as a

sequence character. It is widely believed that the

various parameters that these algorithms employ to

set up a cost regime, such as base substitution and

gap costs, can only be specified or interpreted with

reference to detailed models of the evolutionary

processes that generated the data. However, the

cost regime can also be set according to the prin-

ciple of parsimony as discussed above, leading to a

maximization of the amount of independent

sequence similarity that can be interpreted as due to

inheritance and common descent (De Laet 2004).

Throughout this section I use DNA sequences,

but the discussion is general and applies to any

kind of data that can be conceptualized to be

hierarchically related through substitutions and

indels, including, for example, serial homologs in

morphology or different versions of manuscripts

in stemmatology. Examples are constructed such

that optimalities can be verified by hand.

6.3.1 Some background

Some additional notes on terminology are appro-

priate first. Gap and gap cost terminology can be

confusing because the same terms are sometimes

used for different things and the other way

around. As an example, in a sequence like a t t - - -

t t a c the term gap is sometimes used for each of

the three consecutive missing positions in the

middle (three gaps), or alternatively for the whole

stretch of three missing positions (one gap). In this

paper, a gap always refers to a maximum stretch of

missing positions, not to smaller composing parts.

The length of a gap is the number of positions over

which it extends. The smallest composing part of a

gap is referred to as a unit gap. The character that is

used to indicate a unit gap, a dash in this chapter,

is sometimes called the gap character, a term that

has also been used for characters in data sets that

describe the distribution of a putative indel events

(e.g. Simmons and Ochoterena 2000).

All gap costs in this paper are of the form

aþ (n� 1) � b, in which n is the length of the gap, a

the (gap) opening cost, and b the (gap) extension cost.

If gap opening cost and gap extension cost are

equal, the term unit gap cost refers to either, and

the cost for a gap of length n is n times the unit gap

cost. Such a cost regime can be expressed as a 5� 5

step matrix (see Sankoff and Rousseau 1975) in

which the unit gap is included as a fifth state, in

addition to a, c, g, and t.

The minimal mutation algorithm of Sankoff (1975)

is illustrated in the example of Fig. 6.5b. It recon-

structs inner node sequences and positional corre-

spondences among observed sequences such that

the total number of mutations is minimized under

the assumption that a gap of length n constitutes

n mutation events. This corresponds to a cost

regime in which all base substitution costs, the gap

opening cost, and the gap extension cost are equal.

Sankoff and Cedergren (1983) generalized the

approach to a step matrix with arbitrary metric

distances, still treating a gap of length n as n

events. A further extension to include gap costs of

the form a 0 þ n � b, in which n is the length of the

gap, a 0 þ b the gap opening cost, and b the gap

extension cost, was examined by Altschul (1989,

pp. 307–308). With such gap costs, the first unit

gap of a gap incurs a cost (a 0 þ b), each next unit

a cost of b.

Sankoff (1975) used the concept of optimal frame

sequences to specify reconstructed sequences and

positional correspondences that lead to minimal

costs. Sankoff and Cedergren (1983) framed their

discussion in terms of the slightly less general

concept of tree alignments. A tree alignment always

refers to a particular tree with the given sequences

at the tips and hypothetical or reconstructed

sequences at the inner nodes. It consists of (1) that

tree; (2) a matrix in which both observed and

reconstructed sequences are aligned; and (3) cor-

respondences between nodes of the tree and rows

of the matrix. It is conveniently represented as a

tree in which the nodes are labeled with the rows

of the matrix, as, for example, in Fig. 6.10 (see

below). In this way it is easy to see that, in a tree

alignment, each branch of the tree defines a pair-

wise alignment between the sequences at the two

nodes that the branch connects. The cost of the tree
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alignment is then defined as the sum of the costs of

these pairwise alignments along all branches of the

tree, always with reference to the cost regime in

use. A ‘classic’ multiple alignment of the terminal

sequences is obtained by deleting the rows with

inner-node sequences from the matrix of a tree

alignment. Multiple alignments that are obtained

in this way have been called implied alignments (e.g.

Schwikowski and Vingron 1997; Wheeler 2003a).

Some examples of optimal implied alignments can

be found in Fig. 6.5b.

With cost regimes that make no difference

between gap opening cost and gap extension cost,

the cost at any position in a pairwise alignment of

a tree alignment is independent from the costs at

its other positions. By extension, this also applies

to the costs of complete colums of a tree alignment.

As a result, each such column can be interpreted as

a single-column character with a set of inner-node

state assignments. In this way the algorithm of

Sankoff (1975; all substitution costs and unit gap

cost equal) can be seen as a generalization of the

minimum mutation algorithm of Fitch (1971).

Indeed, under the conditions of Sankoff (1975),

each column of an optimal tree alignment specifies

a character and set of inner-node state assignments

that are also optimal under the conditions of Fitch

(1971). The generalization lies in the fact that dif-

ferent optimal tree alignments for the same data

on the same tree can imply different sets of

Fitch characters (see Fig. 6.5b for examples). The

algorithm of Sankoff and Cedergren (1983; tree

alignments with step matrices) is a similar

generalization of the algorithm of Sankoff and

Rousseau (1975), which, in turn, generalized Fitch

(1971) to accomodate differential weighting within

characters. Under the conditions of Altschul (1989;

different gap opening and gap extension costs),

the costs of the different columns of a tree align-

ment are no longer independent. As a result, such

tree alignments cannot be understood in terms of

independent single-column positional characters.

As was the case with inner-node state assign-

ments for simple single-column characters (com-

pare, e.g., Figs. 6.2c and 6.2e), tree alignments on a

given tree can be optimal or suboptimal. Sankoff

and Cedergren (1983) called the cost of an optimal

tree alignment for a set of observed sequences on

a given tree the tree distance of those sequences on

that tree. Their and similar algorithms (Sankoff

1975; Altschul 1989) can be used to calculate such

tree distances and the reconstructions that come

with them. In terms of the current approach, the

tree distance as defined by Sankoff and Cedergren

(1983) is the length of the sequence character on

that tree. As such, the algorithms of, for example,

Fitch (1971) and Sankoff (1975) are comparable in

the sense that they both calculate the cost of an

optimal reconstruction of a character on a tree. As

will be discussed below, they are vastly different

when it comes to computational complexity. For

tree alignments, the second level of optimization—

the problem of finding, among all possible trees,

trees of minimal length or tree distance—is often

called generalized tree alignment (e.g. Jiang and

Lawler 1994; Vingron 1999) but other terms are

used as well; Hein (1989a), for example, refers to it

as the general parsimony problem.

6.3.2 Putative homologous sequences:
a sequence of characters or a sequence
character?

It has been argued that all substitution costs and the

unit gap cost should be set equal in Sankoff (1975)

style analyses of sequence data (Frost et al. 2001), a

position that will be examined more closely later.

However, first it is argued, in this subsection, that a

general method of sequence alignment must by

necessity move beyond prior multiple alignments

(contra Simmons and Ochoterena 2000; Simmons

2004). The argumentation does not depend on the

particular settings of the cost regime, but for clarity

I tentatively accept the position of Frost et al. (2001)

and contrast (equally weighted) Fitch (1971) ana-

lysis of prior alignments with Sankoff (1975)

analysis of unaligned sequences.

When optimizing a sequence character on a tree,

base-level correspondences among the observed

sequences are not determined and fixed a priori but

calculated as part of the optimization process, as

already illustrated for three terminals in Fig. 6.5.

The full implication of this can be seen when

analyzing more than three sequences, such that

alternative trees exist and have to be examined.

Consider the data set of Fig. 6.6a. For four taxa
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A–D, three unrooted trees exist: (A B)(C D), (A C)

(B D), and (A D)(B C). Using Sankoff (1975), the

latter two are both diagnosed at cost 3 (each time

two substitutions and one indel) while (A B)(C D)

comes at cost 4 (three substitutions and one indel).

Looking at the two optimal trees, (A C)(B D) comes

with the implied alignment of Fig. 6.6b, (A D)(B C)

with the different implied alignment of Fig. 6.6c.

So it is not just that base correspondences are not

fixed prior to analysis, a posteriori they can be dif-

ferent in different optimal trees.

A simple case of symmetry

The data set of Fig. 6.6a has a peculiar symmetry:

when the labels of A and B are switched and the

directions of all sequences reversed, the original

data set is recovered. As such it provides a perfect

example where mutually exclusive sets of putative

homology statements cannot be distinguished at

the level of character analysis. The higher-level

hypothesis in this data set is that the sequences are

orthologs. Within the orthologs, however, the

symmetry makes it logically impossible to decide a

priori if the single c of terminal C is to be con-

sidered homologous to the c in the second position

of A or to the c in the first position of B. Con-

ceptually, this is like the situation in bladderworts,

discussed above, where it cannot be determined a

priori if the vegetative system should be considered

a shoot-like leaf or a leaf-like shoot system (even if

the situation with bladderworts is more complex

because there are still other homologizations that

are considered acceptable on a priori grounds).

Turning to trees, the symmetry has, as a con-

sequence, that these data cannot possibly distin-

guish between (A C)(B D) and (B C)(A D), two

unrooted trees in which the labels of A and B have

been exchanged. This conclusion follows directly

and solely from the internal structure of the data

set. As such it can be used to establish the fol-

lowing strong test for candidate phylogenetic

methods: (A C)(B D) and (B C)(A D) should get the

same score. Any method that does not meet this

test is in serious trouble.

As discussed, Sankoff (1975) optimization dia-

gnoses (A C)(B D) and (B C)(A D) at the same cost

and thus meets the test. Turning to prior align-

ments, the first question is which prior alignments

to consider. With data as simple as this it is easily

established that alignments in Figs 6.6b and 6.6c are

the only valid candidates. All other alternatives,

such as, for example, Fig. 6.6d would need some

special argumentation as to why, in this case, the c

that is observed in terminal C should not a priori be

considered homologous to the c that is observed in

A or to the c that is observed in B. Given that it is

accepted, a priori, that the sequences as a whole are

homologous (they are putative orthologs), this

seems hard to do. A Fitch (1971) analysis of align-

ment 6b yields tree (A C)(B D) at cost 3, with

(B C)(A D) one step more costly; alignment 6c

yields (B C)(A D), also at cost 3, and with (A C)(B D)

one step more costly (in both cases, (A B)(C D) has a

cost of 4). So, when looking at just one alignment,

the two trees get a different score and the method

fails the above test. As a result, depending on the

prior alignment that is used, positive support is

found for either (B C)(A D) or (A C)(B D), whereas

in fact relationships are ambiguous.

Similar symmetry observations can be made

with respect to alignments 6b and 6c: they can be

turned into one another by exchanging the labels

of A and B and reversing the direction of each

sequence. Therefore, if either is considered optimal

according to some criterion, the other should be as

well. So a way out of the problem of finding

spurious relationships with single prior align-

ments suggests itself: rather than to construct and

analyse just one prior alignment, identify and

analyse all different prior multiple alignments that

are considered optimal, and accept only groups

that are common to all. This may sound trivial but

it raises the non-trivial question of how to calculate

the relevant prior optimal multiple alignments. For

this particular example, that question comes down

to finding a criterion that gives an optimal score to

alignments on Figs 6.6b and 6.6c and a worse score

to all other alignments.

Optimal alignments of two sequences can be

calculated using dynamic programming algorithms

A 
B 
C
D

(a) gc
cg
c
gg

A 
B 
C
D

(b) gc
cg
-c
gg

A 
B 
C
D

(c) gc
cg
c-
gg

A 
B 
C
D

(d) gc-
cg-
--c
gg-

Figure 6.6 A simple dataset (a) and three different multiple alignments

(b, c, d).
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as pioneered, in biology, by Needleman and

Wunsch (1970) and Sellers (1974). A description of

the basic algorithm and some historic notes can be

found in Kruskal (1983); extensions are reviewed

in, for example, Gusfield (1997). For the current

purpose, approaches that generalize such algo-

rithms to more than two sequences can be grouped

according to whether or not they use the tree-

alignment approach.

In optimal tree alignments, the kind of data

symmetry in Fig. 6.6a is reflected directly in sym-

metry of calculations when comparing trees

(A C)(B D) and (B C)(A D). So it was not just

coincidence that the above Sankoff (1975) optim-

ization of the data of Fig. 6.6a gave identical scores

for those trees, with implied alignments that dis-

play among themselves the same symmetry as the

data. Theoretically then, one could use a tree-

alignment analysis to generate implied alignments

that are next used as prior alignments. There

would be no need to analyze the implied align-

ments, though, because their best trees would

already have been identified in the preliminary

tree alignment analysis. In fact, while the approach

provides a solution to the problem discussed here,

it actually comes down to giving up the notion that

sequences should be aligned prior to tree evalua-

tion and tree search.

Among the multiple alignments methods that do

not use tree alignments, SP alignments or sums-of-

pairs alignments (Murata et al. 1985; Carillo and

Lipman 1988) and especially progressive alignment

methods (e.g. Feng and Doolittle 1987; Thompson

et al. 1994; Notredame et al. 2000) are probably

most widely used. First consider SP alignments.

An SP alignment of a set of sequences is an

alignment for which the sum of pairwise align-

ment scores between all possible pairs of sequen-

ces is minimal. Setting all substitution costs and

the unit gap cost to 1, it is easily verified that the

alignments of Figs 6.6b and 6.6c have identical SP

scores of 9, leaving the SP criterion as a potential

solution to the problem.

Another case of symmetry

However, consider the data of Fig. 6.7a. Reading

each sequence in reverse, nothing changes for B

and E, but the sequence of A is turned into the

sequence of C and D, and the sequences of C and

D are turned into the sequence of A. Therefore, the

structure of the data set is such that these data

cannot distinguish between trees that differ only in

the positions of A vs. (C D), as, for example, the

pair (B (C D) (A E)) and (A B (E (C D))). Using

Sankoff (1975), these trees both have a cost of 3,

which is the optimal cost over all trees as well.

Tree (B (C D) (A E)), or any other tree that has an

AE–BCD partition, comes with optimal implied

alignment 7b; tree (A B (E (C D))), or any other tree

that has an AB–CDE and an ABE–CD partition,

comes with alignment 7c. As above, these implied

alignments have among themselves the same

symmetry as the unaligned data. So Sankoff (1975)

optimization does not tell these trees apart, and

correctly so.

This is necessarily so as long as the ancestor of C

and D has a reconstructed sequence that is ident-

ical to and perfectly aligned with the sequences of

C and D in optimal tree alignments. If this is the

case, the data symmetry is directly reflected in the

Sankoff (1975) calculations that are performed on

the two trees that are involved, and an identical

cost on both trees follows. The assumption about

the reconstructed sequence for the ancestor of C

and D is easily proved by showing that its nega-

tion leads to a contradiction. Assume that an

optimal tree alignment exists in which the ancestor

of C and D has a sequence that is different or

differently aligned. In that case, the tree alignment

can be improved—contradicting the premise—by

changing that ancestor and its alignment as indic-

ated above. That this is an improvement can be

seen as follows: for any position in the ancestor of

C and D with an entry (base or unit gap) that is

different from the base at the corresponding posi-

tion in C and D, changing that entry into the cor-

responding entry of C and D will improve the cost

A 
B 
C
D
E

(a) ct
c
tc
tc
tt

A 
B 
C
D
E

(b) ct
-c
tc
tc
tt

A 
B 
C
D
E

(c) ct
c-
tc
tc
tt

Figure 6.7 A simple data set (a) and two different multiple alignments

(b, c). According to the SP criterion, alignment (b) is better than

alignment (c) (SP scores 13 and 14).
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by two mutations; at the same time, that change

can incur at most one additional mutation,

between the ancestor of C and D and the third

node to which this ancestor is connected. So, in

conclusion, optimal tree alignments are not tricked

by data symmetries such as in Fig. 6.7.

This does not hold for SP alignments: alignment

7b has a better SP score than alignment 7c (13 vs.

14; the score for 7b is optimal), proving the case by

counter example. As a result, if the SP criterion

were used to construct and select prior alignments,

alignment 7b would be selected and trees with AB–

CDE and ABE–CD partitions considered sub-

optimal in the subsequent phylogenetic analysis.

To salvage the approach, one could consider to

examine suboptimal SP alignments, like 7c, up to

the degree that all prior alignments have been

accepted that are involved in symmetries such as

in Figs. 6.6a and 6.7a. But this would not work, for

two reasons. First, there is no general way to tell

how far one has to descend into suboptimality

before all relevant alignments have been taken into

account. Second, many additional and unwanted

alignments might pass as well. So accepting sub-

optimal SP alignments cannot be a general solution

to this problem of data symmetry.

Similar problems can arise with progressive

alignments using guide trees (e.g. Thompson et al.

1994; see also Feng and Doolittle 1987). Such trees

are usually constructed on the basis of a square

overall distance matrix that is derived from pair-

wise alignment scores. Multiple alignment then

proceeds by traversing this tree from terminals to

the root. At each node that is visited, a partial

multiple alignment is created that includes and

combines the partial alignments that are found at

the daughter nodes (terminal nodes are initially

assigned a trivial partial alignment that includes

just the observed sequence of that node). In this

way, all sequences are included in the alignment

after the root node has been visited. At any node,

the alignment of partial alignments mostly pro-

ceeds by using some modification of the SP cri-

terion, considering only those pairwise alignments

across the node being considered. Moreover, this

criterion is mostly applied only locally: gaps that

have been inserted before will never be removed.

In general, this group of methods cannot guarantee

that symmetries as discussed here are properly

taken into account.

A case of local symmetry

Based on the premise that multiple alignments

should be constructed prior to tree search on the

basis of a similarity criterion, Simmons (2004,

p. 876; see also Ochoterena 2004) recently pro-

posed the following tree-independent procedure

for constructing optimal prior alignments. In a first

step, construct one or more multiple alignments

using, for example, programs that try to maximize

(an unspecified measure of) similarity, or infor-

mation from secondary structure. Next, evaluate

these alignments using the number of ‘differences’

that are implied, and try to lower that score by

adjusting those alignments. Such adjustments can

be done manually or, ideally, using optimization

programs. The rationale is to further increase the

amount of similarity that is present in the align-

ment. The best alignments that are obtained are

then subjected to parsimony analysis.

In the above, the number of differences is best

explained by first looking at a regular data set such

as in Fig. 6.1. For each character in the data set, the

observed variation m (Farris 1989a, p. 417) is one

less than the number of states in the character, and

that number is the minimum of steps that the

character can have on any tree. The observed

variation for the data set as a whole, M, is the sum

of the observed variation in all its characters, and

can be interpreted as the number of steps that the

best tree for the data set would have if all char-

acters were congruent. If indel events would not

occur, the number of differences in the sense of

Simmons (2004) would be equal to M. But indel

events do occur and complicate matters because

single indel events can affect multiple columns of

an alignment. However, as will be clear below,

further details of the calculations that are involved

in such cases (see, for example, Simmons and

Ochoterena 2000) are not required for the current

argument. Simmons (2004) observed that minim-

ization of differences in this sense can lead to

trivial alignments that require only as many indels

as there are sequences in the data set, irrespective

of the tree being considered (see Fig. 6.13c, below,

for an example). To circumvent that problem,
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Simmons (2004, p. 876) suggested not to add

positions to alignments as obtained in the first step

during possible adjustments in the second step.

This optimality criterion assigns the same scores

to the symmetric alignments of Figs. 6.6 and 6.7,

and in each case all other alignments have a worse

score. Therefore this approach could correctly

identify the relevant prior alignments for these

problematic data sets. However, consider the data

set of Fig. 6.8a, a case where two different sets of

putative homologous sequences are analysed

simultaneously (the example uses two sets of

sequences for reasons of clarity only; similar

examples can be constructed that use only one set

of putative homologs). The structure of the first set

of sequences jumps out so clearly that it is easily

seen that the best trees for that part of the data are

(out (A (B (C (D (E (H (F G)))))))) and (out (A (B (C

(D (F (H (E G)))))))). Moreover, it is easily estab-

lished that the first set of sequences is so strongly

structured that the problem of finding the best

trees for the data set as a whole reduces to evalu-

ating the second set of sequences on those two

trees.

In both trees, consider the ancestor of terminals

D–H and this second set of sequences. In each case,

that node will be optimized as c for the alignments

of Figs. 6.8b and 6.8c, or indeed for any alignment

in which the c’s of terminals A–D are aligned (it is

easily seen that such must be the case for optimal

explanations). Next consider the data set of

Fig. 6.8d, where terminals out, A, B, C, and D have

been replaced by a single hypothetical terminal

I that is assigned that reconstructed sequence c.

This reduced data set exhibits the same kind of

data symmetry as discussed above: change the

labels of E and F, reverse the direction in which the

sequences are read, and the original data set is

recovered. Considering all this, the second set of

sequences of Fig. 6.8a cannot be used to distin-

guish between the two candidate trees, as these

only differ in their relative positions of E and F.

Therefore, any method that assigns different scores

to these trees for these data is in serious trouble.

The algorithm of Sankoff (1975) properly takes

into account data symmetries such as in Fig. 6.8d.

It also treats the whole data set of Fig. 6.8a cor-

rectly, which can be shown, as above, by observing

that optimal tree alignments on optimal trees have

to reconstruct the ancestral sequence for terminals

D–H as c, and such that this c is aligned with the

c’s of terminals A–D. The score for the complete

data set of Fig. 6.8a on both trees is 30, and this is

also the optimal score. Two corresponding implied

alignments are shown in Figs. 6.8b and 6.8c. As

above, these display the same symmetry as the

raw data (other optimal tree alignments exist, but

that does not affect the argumentation).

Evaluating these implied alignments using the

criterion of Simmons (2004) cannot be done by

simply summing over isolated columns because

some gaps affect more than one column, and more

elaborate calculations are required. However,

these are not really required in this case because

reversing the sequences in both alignments estab-

lishes mutual symmetry of gap positions for such

calculations. So, whatever the contribution of the

gaps in the first alignment, it will be the same in

the second and their unit gaps can therefore be

treated as missing entries for the purpose of

assessing the relative scores of the alignments. This

results in relative score three for Fig. 6.8b but four

out
A 
B 
C
D
E
F
G
H

(a) ttttttttttggggtttt tcca
aattttttttggggtttt c
aaaattttttggggtttt c
aaaaaattttggggtttt c
aaaaaaaattggggtttt c
aaaaaaaaaaggggaaaa cg
aaaaaaaaaacccctttt gc
aaaaaaaaaaccccaaaa aca
aaaaaaaaaaccggaatt gg

(b) tcca
-c--
-c--
-c--
-c--
-cg-
-gc-
-aca
-gg-

(c) tcca
--c-
--c-
--c-
--c-
-cg-
-gc-
aca-
-gg-

(d)

I c
E cg
F gc
G aca
H gg

Figure 6.8 An example of localized data symmetry. (a) A data set consisting of two sets of putative homologous sequences. (b, c) Two multiple

alignments for the second set. (d) Reduced data set that exhibits the same kind of symmetry as discussed for Fig. 6.6.
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for Fig. 6.8c, and the procedure of Simmons (2004)

therefore would lead to prior rejection of the

alignment of Fig. 6.8c. The net result is that this

procedure leads to rejection of a tree that the data

cannot distinguish from a tree that it accepts.

Comparing the alignments of Figs 6.8b and 6.8c,

the preference of the optimality criterion of

Simmons (2004) for the first one boils down to the

fact that it puts the last a of terminal G in the same

column as the last a of the outgroup. But on the

best tree for this alignment, the a that G and the

outgroup share cannot be explained as identical by

common descent and inheritance. Consider the

consequences of this observation in the light of the

overall analysis, where tree (out (A (B (C (D (E (H

(F G)))))))) is accepted but (out (A (B (C (D (F (H (E

G)))))))) rejected. Given the local symmetry in the

second sequence character, both trees explain the

data equally well, albeit with different posterior

homologizations of positions and base identities.

But they are different in their amounts of homo-

plasy: overall, the first tree has a homoplastic

pairwise base similarity (the last a of terminal G

and the outgroup) that the second tree lacks.

Moreover, the preference for the first tree when

using the procedure of Simmons (2004) is based

solely on this difference: of the two trees with

equal amount of similarity that can be explained as

homology, it selects the tree that has the higher

amount of homoplasious similarity. In more com-

plex cases, this effect can ultimately lead to rejec-

tion of trees with higher amounts of homologous

similarity in favour of trees with lower amounts of

homologous similarity. The same problem can also

occur with the related tree-independent optimality

criteria for multiple alignments that have recently

been discussed by Carpenter (2003, pp. 6–7) and

Nixon and Little (2004).

General conclusions

None of this is accidental. Data symmetries such as

in Figs 6.6a, 6.7a, and 6.8a have a consequence that

no distinction can be made between particular

trees or groups of trees. As a result, methods of

analysis that do not directly take into account the

structure of trees (e.g. SP alignment or the pro-

cedure of Simmons 2004), or do so in a way that

violates the symmetry (e.g. progressive alignment,

or even just the use of suboptimal tree alignments),

will not in general be able to deal with such

situations. This leaves, by definition, optimal tree

alignment methods. As a corollary, unless one is

willing to defend methods that in some cases can

give different scores to trees that cannot be dis-

tinguished by the data at hand, alignment and tree

search cannot be properly separated in phyloge-

netic analysis of sequence data. Note that this

conclusion is argued and reached in logical space.

Whether or not it results in a practically feasible

method will be discussed below.

The examples of Figs 6.6a, 6.7a, and 6.8a are

unusual in that some terminals have sequences

that are the exact reverse of other sequences, a

situation that will hardly if ever arise in real data

sets. But such perfect crab canons are not neces-

sary for the phenomenon to occur. Sequences such

as those can be embedded as short motifs in longer

sequences that as a whole are not identical when

read in reverse, and similar distortions could

result. For simple examples as above, one could

argue that the problem can easily be spotted and

solved by carefully inspecting the data and the

alignments by eye, but this approach would no

longer work in such more complex cases.

In addition, the motifs that are involved do not

have to be identical when read in reverse, only

their alignment scores with the other sequences

must remain unchanged. Lastly, even when the

symmetry in the motifs is not perfect, by devia-

tions in motif sequence and/or substitution costs

that are involved, systematic distortions, though

less well defined, would still arise. So situations

where short subsequences can have alternative

optimal alignments, with different local costs on

different trees, may well be relatively common in

empirical data. Moreover, when such data sets are

aligned progressively according to a guide tree

(using, for example, CLUSTAL; Thompson et al.

1994), such ambiguities that include groups of the

guide tree may systematically be resolved in favor

of the guide tree.

Summarizing, alignment and tree evaluation

cannot be properly separated in phylogenetic ana-

lyses of sequence data. As a consequence, the view

that a set of sequences that are deemed putative

homologues should be turned into a sequence of
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positional characters prior to tree search and eva-

luation is erroneous or at best incomplete. Instead,

such sequences constitute a single complex char-

acter, a sequence character, that can be optimized

on trees using optimal tree alignment algorithms

such as that of Sankoff (1975). These conclusions

follow from very general considerations of data

symmetry and do not depend on details of the cost

regime that is used.

6.3.3 Quantifying and maximizing homology
in sequence characters

Frost et al. (2001, pp. 354–355; they use the term

‘indel’ for a unit gap as used here) discussed the

method of direct optimization (Wheeler 1996), and

argued for setting all substitution costs and the

unit gap cost equal because this amounts to equal

weighting of all hypothesized transformations,

which in turn ‘renders the highest degree of des-

criptive efficiency and maximizes the explanatory

power of all lines of evidence (i.e. characters).’

Direct optimization has been proposed and is

still often discussed as a sequence optimization

method that is qualitatively different from optimal

tree alignment methods, but the method is best

seen as a heuristic approximation for optimal tree

alignments (De Laet and Wheeler 2003; see also

below), and the claimed novelty of the approach

rests on a lack of familiarity with or misunder-

standing or misrepresentation of the work of

Sankoff (1975) and Sankoff and Cedergren (1983)

(see, e.g., Wheeler 1996, 1998; Giribet and Wheeler

1999; Phillips et al. 2000; Wheeler 2001b, 2002,

2003a). Therefore, the argumentation of Frost et al.

(2001) amounts to a preference for the minimum

mutation algorithm of Sankoff (1975).

Consider the sequence character aaa, gat, and agt

and two alternative tree alignments on the single

tree for three terminals as presented in Fig. 6.9.

With the above cost regime, tree alignment 9a is

better than 9b (three steps versus four). On the

other hand, when looking at independent accom-

modated pairwise similarities, as a measure of the

amount of similarity that can be explained as

homology, 9b performs better than 9a: it accomod-

ates one more independent pairwise base match.

This should not come as a surprise. For pairwise

alignments, Smith et al. (1981; their equation 4b

with wk¼ 0) showed that maximization of base-to-

base matches is equivalent to minimization of cost

when all base substitution costs are set at twice the

unit gap cost, a different regime than advocated by

Frost et al. (2001). This result of Smith et al. (1981)

cannot directly be extended to comparisons of

more than two sequences, but a generalization to

tree alignments (see below) still yields a cost

regime that is different from the one favored by

Frost et al. (2001). With more than three sequences,

this difference can lead to a preference for different

trees.

On a general level, this example merely reflects

the well-known fact that the choice of substitution,

gap opening, and gap extension costs affects the

result of alignment and tree-building procedures.

When examining the logical basis of sequence

analysis, however, the paradoxical situation arises

that the objectives of maximizing explanatory

power and maximizing independent homologous

similarity seem to be at odds. As discussed below,

this contradiction is only apparent because the pre-

mises at either side of the comparison are faulty:

setting all costs equal does not maximize expla-

natory power, and independent base-to-base

homologous similarity is not all there is to

sequence homology.

Subsequence homology and compositional homology

The latter is easily seen when considering a data

set, such as in Fig. 6.10, where sequences differ

only in length. The two tree alignments that are

shown do not differ in the number of independent

aaa

aat

agt gat

(a) aaa-

agat

ag-t -gat

(b)

Figure 6.9 Two different tree alignments of the putative homologues

aaa, agt, and gat on the single tree for three sequences.

(a) This reconstruction requires three steps (three substitutions, no indels)

and retains three independent pairwise base similarities among observed

sequences. (b) At four steps (one substitution, three indels) this

reconstruction requires one more transformation, even if it retains one

more independent pairwise similarity among observed sequences.
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base-to-base matches among observed sequences

that they accommodate: in both cases there are 20

independent base-to-base comparisons, and all

these are matches. Yet, the first tree alignment can

be considered a better explanation of the data at

hand because it captures an element of homo-

logous similarity between the sequences of A and

B that is not retained in the second one. However

the tree of the first tree alignment is rooted, A and

B share the absence of bases 4–7 with their direct

ancestor. Depending on the position of the root,

these three contiguous nodes lack the insertion of

that subsequence, or they share its deletion; in both

cases, this comes down to one unit similarity that

can be explained as a homology. On the second

tree alignment, the shared absence of bases 4–7 in

A and B must be explained as a homoplasy. The

main conclusion that can be drawn from this

simple example is that sequence homology has

a component that cannot be reduced to mere

base-to-base composition. This component I shall

refer to as homology of subsequences, as opposed to

base-to-base or compositional homology within

homologous subsequences.

The two components of sequence homology can

be optimized separately but there would be little

use in doing so. When just optimizing base-to-base

similarities, gaps will be inserted ‘at will’ to max-

imize matches (Smith et al. 1981, p. 42). On the

other hand, maximizing subsequence homology

without regard for the composition of those sub-

sequences comes down to optimizing the length of

the observed sequences as a regular unordered

character, irrespective of the amount of substitu-

tions that are implied. Optimized in isolation,

neither will in general result in a globally optimal

explanation of the data.

Instead, what is needed is an optimal balance

between subsequence and compositional homol-

ogy. This optimal balance can be found by using a

cost regime that is the sum of the two cost regimes

that are involved, provided that there is a

mechanism to avoid or deal with logical contra-

dictions between optimizations of both compon-

ents. Such a mechanism is implicit in tree

alignments because tree alignments are internally

consistent explanations of the data. Therefore,

expressions to describe the amount of subsequence

homology and the amount of compositional

homology in tree alignments can be derived

independently and then simply summed to get an

expression for the total amount of sequence

homology. This expression, finally, can be used for

purposes of optimization.

Quantifying the amount of subsequence homology

of a tree alignment

The amount of subsequence similarity in a tree

alignment that can be interpreted as homology can

be measured indirectly and in a relative way by

A
B
C
D
E

aaa
aaa
aaaaaaa
aaaaaaa
aaaaaaa

(a) (b)

(c)

aaa----   A

aaa---- aaaaaaa

C
aaaaaaa

aaa----   B

D aaaaaaa

aaaaaaa

E aaaaaaa

aaa----   A

aaaaaaa aaaaaaa

C
aaaaaaa

aaaaaaa   D

B aaa----

aaaaaaa

E aaaaaaa

Figure 6.10 A data set in which the sequences only differ in their lengths (a) and two trees with optimal inner-node reconstructions and

positional correspondences under the assumption that insertion/deletion of a stretch of contiguous bases is counted as one transformation (b, c).

Double bars indicate indel events. Note that on each tree alternative sets of optimal positional correspondences exist.

106 P A R S I M O N Y , P H Y L O G E N Y , A N D G E N O M I C S



counting nindels, the number of independent indel

events, provided that the insertion/deletion of a

series of contiguous bases is counted as a single

event. This is so because each such indel

event effectively marks a subsequence that is

not homologous across a branch. Therefore, an

independent indel event can be seen as an inde-

pendent unit of non-homology in subsequence

homology.

As discussed above, the cost of a tree alignment

is obtained as the sum of the costs of the pairwise

alignments across the branches of the tree. Tech-

nically, counting independent indel events in such

a pairwise alignment is achieved by setting sub-

stitution costs to 0, gap opening cost to 1, and gap

extension cost to 0. In addition, when evaluating

such a pairwise alignment, paired gaps have to be

removed first, a procedure that Altschul (1989)

called projection. Projection is required because

paired gaps just indicate that both sequences miss

something that is present elsewhere on the tree

and because the indel events that caused such a

shared absence are accounted for along other

branches. As an example, going from -gaat---ccct-

to -gaat--ccccc- in, for example, the second tree

alignment of Fig. 6.14, (see below) means going

from gaat-ccct to gaatccccc. As far as subsequence

homology is concerned, this comes at cost 1

(1 times the gap opening cost of 1 plus 0 times the

extension cost of 0).

Quantifying the amount of compositional homology

of a tree alignment

Specifying an expression for compositional simi-

larity that can be explained as homology is more

elaborate. A tree alignment can be seen as a reg-

ular multiple alignment with, for each position,

reconstructions at the inner nodes. If, in a single

column, the tree path between two observed bases

passes through an inner node that is optimized as

a unit gap character, these bases are not compar-

able because they are part of non-homologous

subsequences; if, on the other hand, the connect-

ing path has no nodes with unit gaps, they belong

to homologous subsequences; more specifically,

they occur at the same position within those

homologues. I refer to such bases as comparable

bases.

The observed bases in a single column of a tree

alignment can be sorted into a number of groups

such that two bases from the same group are

comparable but two bases from different groups

are not comparable. I shall refer to these groups of

comparable bases as subcharacters, a concept that is

closely related to the concept of regions as defined

above, and denote the number of subcharacters in

a column of a tree alignment as nscc. This number

is related but not identical to the number of indel

events in which this column of the alignment is

involved.

Within a subcharacter, denote the number of

observed bases as nobsc. If two such bases are ident-

ical and all nodes in the path that connects them

are labeled with that same base, then the two bases

match and their shared presence can be explained

as a homology. If any node in the path that con-

nects two such identical bases has a base that is

different, then they don’t match and their shared

presence cannot be explained as a homology. Two

non-identical bases of a subcharacter or two bases

that belong to different subcharacters, finally, do

not contribute to base-to-base homology. The

minimum number of pairwise comparisons that

have to be made to classify the bases of a sub-

character into subgroups of such matching bases is

nobsc� 1. The number of mismatches nmmsc in any

such set of nobsc� 1 independent pairwise com-

parisons can be thought of as the number of base

substitutions or steps within the subcharacter.

With these definitions, the amount of composi-

tional homology in a subcharacter is obtained just

as the amount of homology in a regular character:

the maximum number of independent pairwise

comparisons minus its number of steps, or

nobsc� 1� nmmsc. With nobc the total number of

observed bases and nmmc the total number of

substitutions in a column of a tree alignment, the

amount of compositional homology in a column is

nobc� nscc� nmmc. The amount of compositional

homology in the whole tree alignment is the sum

of this value over all columns. Switching signs,

nsccþ nmmc� nobc describes a cost function that

varies directly with compositional homology in a

column. In this expression, nscc can be considered

a cost factor that accounts for local loss of com-

positional homology due to indel events (that may
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encompass multiple neigbouring columns), and

nmmc a regular substitution cost factor.

Maximizing homology in sequence characters

Adding it up, the total amount of homology of

different tree alignments for a given set of

sequences can be compared using cost function

nindelsþS(nsccþ nmmc� nobc), where the summa-

tion is over all columns of the tree alignment: the

lower the cost, the higher the amount of homology.

In this expression, losses in subsequence homology

and compositional homology are weighted equally.

Differential weighting, for example to downweight

subsequence homology, can be done by applying

different weights to the two terms that are

involved. As Snobc is identical for different tree

alignments for the same data, the cost func-

tion for a tree alignment can be reduced to

nindelsþS(nsccþ nmmc). Using nsubc for Snscc and

nsubst for Snmmc, the relative amounts of total

homology of two different tree alignments can be

compared using nindelsþ nsubcþ nsubst, the sum of

indel events, subcharacters, and substitutions.

Alternatively, the problem can be presented as a

maximization of a similarity measure; this simi-

larity measure would count independent homo-

logous base-to-base matches but assign a penalty

to indel events, much as the original algorithm of

Needleman and Wunsch (1970). More specifically,

the penalty would be � 1 for each indel event in

the tree alignment, irrespective of the length of the

indel. In comparisons of two and three sequences,

such similarity measures with length independent

gap penalties have been studied by Fredman

(1984) (fide Hein 1989a, p. 650).

In Figs. 6.11–6.15, the positions of all inferred

indel events are indicated throughout the tree

alignments, using vertical bars. The subsequences

that are defined in that way can be considered

logical subsequences. In simple cases, such logical

subsequences are identical to the subsequences

that effectively take part in the inferred indel

events (e.g. Figs 6.11–6.14), but in more complex

cases a single inferred indel event along a parti-

cular branch can affect a series of contiguous

logical subsequences (see Fig. 6.15 for examples).

The total number of subcharacters in a tree align-

ment can be easily determined as the sum of the

lengths of its different homologous logical sub-

sequences.

For any given tree alignment, nindelsþ nsubcþ nsubst

is a straightforward expression that is easily

checked, but finding the tree alignment(s) for

which this expression is minimal is quite some-

thing else. Even for a single given tree, the pro-

blem of deciding if a tree alignment is optimal has

been shown to be NP-complete (Wang and Jiang

1994). Algorithmically, as the subsequence

homology component requires use of variable gap

costs (gap opening cost 1, gap extension cost 0),

the algorithms of Sankoff (1975) and Sankoff and

Cedergren (1983) are not adequate. Altschul (1989)

does accomodate variable gap costs but still this is

not sufficient because his algorithm does not keep

track of the number of subcharacters in a column.

This directly implies that the current cost function

cannot be expressed just in terms of substitution,

gap opening, and gap extension costs. To optimize

this function, the dynamic programming recur-

rences of Altschul (1989) would have to be adapted

and extended to keep track of observed bases and

subcharacters in columns as well.

6.3.4 Discussion

So, when applied to sequence data, the simple

principle of maximizing similarity that can inter-

preted as homology, in a logically correct way,

leads to a preference for those trees on which the

sum of indel events, base substututions, and sub-

characters is minimal. In this final subsection,

some properties and wider connections of this

parsimony criterion are discussed.

Heuristics

Even with simple Hamming distances, as when

using Fitch (1971) optimization of prior align-

ments, the problem of deciding if a tree is optimal

is NP-complete (Foulds and Graham 1982). So,

when combining tree search and tree alignment,

one NP-complete problem is nested within

another. As pointed out by Hein (1989a, p. 651),

the computational complexity of this problem

makes the use of heuristic approximations una-

voidable. Examples of algorithms for heuristic

approximations of optimal tree alignment costs, or
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algorithms that can be interpreted as such, can be

found in, for example, Sankoff et al. (1973, 1976),

Hein (1989a, b), Jiang and Lawler (1994), Wang et

al. (1996), Wheeler (1996, 1999, 2003c; all available

in Wheeler et al. 2003, where they are tightly

integrated with a wide range of tree search

heuristics; see De Laet and Wheeler 2003), and

Schwikowski and Vingron (1997, 2003). Still other

approaches can be found in the reviews of Vingron

(1999) and Notredame (2002).

It currently remains largely an open question

how well these various approaches perform in

practice. In the end, even the use of an a priori

alignment can be seen as a quick and dirty heur-

istic for the analysis of a sequence character. Even

if any single such analysis is too shallow to be

satisfactory, analyses of many different prior

alignments may be effectively combined into a

more elaborate search strategy, following the

heuristic logic as developed in Farris et al. (1996)

(see also Goloboff and Farris 2001).

Most heuristic tree alignment methods attack

the optimal tree alignment problem by approx-

imate decomposition into a set of simpler pro-

blems that can easily be solved exactly using

pairwise alignments (e.g. Hein 1989a; Wang et al.

1996; Wheeler 1996, 1999) or threewise alignments

on a star tree (e.g. Sankoff et al. 1973; Wheeler

2003c). Interestingly, compositional homology in a

pairwise alignment amounts to the number of base

matches, a number that can be maximized by

setting the unit gap cost to half the substitution

cost (Smith et al. 1981). To maximize total sequence

homology in a pairwise alignment, an additional

penalty has to be added for losses in subsequence

homology, which, as discussed above, can be done

using the gap opening cost. With equal weighting

of both components of homology, this penalty

equals the substitution cost. As an example, using

a substitution cost of 2, the corresponding gap-

opening cost is 2þ 1, and the corresponding gap

extension cost 1. The same result holds for three-

wise comparisons on a star tree.

Beyond three sequences this simpler cost regime

is no longer equivalent to the criterion developed

here, as can be seen from the following counter-

example. The tree alignment of Fig. 6.11b explains

the sequence character of Fig. 6.11a better than

Fig. 6.11c because it can explain an additional

independent pairwise base match: the a that ter-

minates the sequences of B and D. This difference

is correctly measured by the sum of indels, sub-

characters, and substitutions, but with the simpler

cost regime, both tree alignments come at the same

cost of 12. In more complex examples, such situa-

tions can lead to a preference for different trees

alltogether. The simpler cost regime may never-

theless be a good choice when using heuristic tree

alignment methods that are based on pairwise or

threewise comparisons of sequences.

For some approximation methods an upper

bound can be established for their deviation of

optimality. As an example, consider lifted align-

ments (Jiang and Lawler 1994; Wang et al. 1996; see

also Wheeler 1999; Lutzoni et al. 2000), in which

possible inner-node sequences are chosen from

and restricted to the set of observed sequences.

Under these restricted conditions, an efficient

algorithm exists to find the optimal assignments of

sequences to inner nodes of a given tree, and the

resulting tree alignment can be shown to have a

cost that is at most twice the cost of the unrestricted

(b)
ggg|-  A
1      

A
B
C
D

ggg
ggga
ttt
ttta

(a)

ggg|a
1  2

ggg|a  B
1  2   

C  ttt|-
    1      

ttt|a
 1  2

D  ttt|a
    1  2   

(c)
ggg|-  A
1      

ggg|-
1   

ggg|a  B
1  2   

C  ttt|-
    1   

ttt|-
1

D  ttt|a
    1  3

Figure 6.11 An example of the parsimony criterion for sequence characters. (a) A sequence character. (b) An optimal tree alignment on the optimal tree.

(c) A suboptimal tree alignment on the optimal tree (same number of indel events and substitutions, but one more subcharacter). Single bars across

branches indicate substitutions, double bars indel events. Logical subsequences are indicated using vertical bars, and numbered for clarity.
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optimum for that tree (Wang et al. 1996) As

discussed by Gusfield (1997, p. 358), such bounded-

error approximation methods can help to under-

stand the behaviour of difficult optimization

problems; from a practical point of view, they may

be combined with other methods, such as local

improvement methods, to obtain more elaborate

heuristic search strategies.

Inapplicables

The example of Fig. 6.12 illustrates that indel events

divide the sequences of the tree alignment into

subsequences that can be considered indepen-

dently: the two optimal alignments that are shown

have identical subsequences and only differ in

the way that those subsequences (and their sub-

characters) are presented. Incidentally, this example

also shows that postulated indel events may

improve the explanation of the data even in cases

where all observed sequences have the same length.

This independence is a direct consequence of the

fact that, in the current approach, base-to-base

comparisons are only made within subsequences

that can be explained as homologs. As a con-

sequence, comparisons of sequences and their

bases automatically occur at the correct levels of

generality, and the problems with inapplicables

that Maddison (1993) described simply dissolve.

Indeed, Maddison (1993, p. 580) observed that all

solutions that he considered to deal with inap-

plicables were in the end problematic because they

did not properly restrict counting of steps to parts

of trees where comparisons were valid, and he

correctly surmised that an eventual solution would

lie in the development of new algorithms. Most

cases of inapplicability, however, would not

require an algorithm as complex as the one dis-

cussed here, because there are fewer degrees of

freedom in a priori acceptable hypotheses of

homology.

(b)
---|aaaa|ttt  A

2    
A
B
C
D

aaaattt
tttaaaa
gggcccc
ccccggg

(a)

---|aaaa|---

ttt|aaaa|--- B
3            

C  ggg|cccc|---
    4

---|cccc|---

D  ---|cccc|ggg
             5

1 1

1 1

1 1 24

indels:  4

subc: 16

subs:  4

(c)
------|aaaa|ttt| A

2    

------|aaaa|------

---|ttt|aaaa|------  B
3                

C  ggg|---|cccc|------
    4

------|cccc|------

D  ------|cccc|---|ggg
                    5

1 1

1 1

1 1 24

indels:  4

subc: 16

subs:  4

(d)
aaaattt  A

tttaaaa

tttaaaa  B

C  gggcccc
      1

gggcccc

D  ccccggg
      1

1

1 1

1 26

indels:  0

subc:  7

subs: 19

Figure 6.12 An example of the parsimony criterion for sequence characters. (a) A sequence character in which all sequences have equal length.

(b, c, d) Three tree alignments of the character on the optimal tree (A B)(C D). The first two, requiring four indel events, are optimal; the third,

not requiring indel events, is suboptimal by two units. The two optimal alignments that are shown imply the same five subsequences that take part

in indel events and differ only in the way that these subsequences are presented (still other possibilities exist). Subs, subc, and indels are numbers

of substitutions, subcharacters, and indel events. Single bars across branches indicate substitutions, double bars indel events. Logical subsequences

are indicated using vertical bars, and numbered for clarity.
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Consider again the multiple alignment of

Fig. 6.8b, but now assume that the four columns

are regular independent single-column characters,

with a dash indicating inapplicability. Obviously,

in this case there is no need to examine alternative

groupings of states, such as in Fig. 6.8c, during tree

search and optimization. Permitting such shifts

would lead to the same problems as when using

absence/presence coding of individual states. As

the computational complexity of the current

approach mostly derives from the need to examine

alternative groupings of bases when optimizing

sequences on a tree, this restriction has as a

fortunate consequence that the general algorithm

for dealing with this kind of inapplicability is

much simpler and faster (De Laet 2003).

Maximizing homologous similarity vs. mimimizing

transformations

The parsimony criterion as discussed here relies on

the notion that one indel event counts as one unit

loss of subsequence homology, irrespective of the

number of bases that are involved. But this does

not mean that it would in general produce trivial

alignments that are obtained by simply juxtapos-

ing all observed sequences, which requires only as

many insertion events as there are sequences. An

example is presented in Fig. 6.13. In the optimal

tree alignment of Fig. 6.13b, two independent

pairwise base matches can be explained as

homology. The trivial alignment that is obtained

by juxtaposing all observed sequences (Fig. 6.13c)

has no such base matches. In addition, compared

to the first tree alignment, it has has four inde-

pendent instances of subsequence non-homology.

The total difference in explanatory power thus

equals six, which is reflected in the relative tree

scores.

This shows that the current criterion is not a

minimum evolution method: the second tree

alignment of Fig. 6.13 requires only four muta-

tions (four insertions of subsequences of length

four) but it is considered a much worse explana-

tion of the data than the first one, which requires

10 mutations (10 substitutions). Given that one of

the terms in the minimization for sequence

character homology is the number of sub-

characters, a quantity that has no direct relation-

ship with evolutionary transformations, the non-

equivalence of both approaches when dealing

with sequence characters should come as no

surprise. But this non-equivalence with minimiza-

tion of evolutionary transformations does not

imply that the current method is not logically

capable of phylogenetic interpretation. Such an

interpretation, however, is in terms of unit state-

ments of similarity that can be explained in a

logically consistent way as identity through

(b)
A
B
C
D

aaaa
ggag
tccc
tttt

(a)

(c)
aaaa|------------  A

----------------

----|ggag|--------  B

C  --------|tccc|----

----------------

D  ------------|tttt

1 3

2 4 20

indels:  4

subc: 16

aaaa  A

aaaa

ggag  B

C  tccc
     1

tttt

D  tttt
1

1

1 1

1

subs:  0

14

indels:  0

subc:  4

subs: 10

Figure 6.13 An example of the parsimony criterion for sequence characters. (a) A sequence character. (b, c) Two tree alignments on the optimal

tree (A B)(C D). The first is optimal. The second, obtained by simply juxtaposing all observed sequences, is suboptimal by six units. Subs, subc, and

indels are numbers of substitutions, subcharacters, and indel events. Single bars across branches indicate substitutions, double bars indel events.

Logical subsequences are indicated using vertical bars, and numbered for clarity.

P A R S I M O N Y A N D T H E P R O B L E M O F I N A P P L I C A B L E S I N S E Q U E N C E D A T A 111



common descent and inheritance, and not in

terms of numbers of transformations that are

required to that effect.

An example where different optimal tree align-

ments on the best tree have different numbers of

indels plus substitutions is presented in Fig. 6.14.

The two first tree alignments have more indel

events plus substitutions than the third one (11

versus 9), but despite this higher total number of

mutations, they provide an equally good overall

explanation of the data in terms of the amount of

total sequence similarity that can be explained as

homology. More precisely, the first alignment

accomodates 29 independent pairwise matches

among observed bases, the second 30, and the third

one 30 as well, as easily verified by examining

the tree alignments column by column. So just

considering compositional homology, the first

explanation is suboptimal. The difference, how-

ever, is exactly offset by its lower loss in sub-

sequence homology (three indels versus four and

four). With the cost regime that is advocated by

Frost et al. (2001) (all costs equal), the optimization of

Fig. 6.14c is preferred (cost 12 vs. costs 13 for 14b and

14 for 14d).

The difference between both cost regimes is

further illustrated in Fig. 6.15. Maximizing the

amount of sequence similarity that can be inter-

preted as homology, the tree of Fig. 6.15b is

optimal, and an optimal tree alignment is shown.

The tree of Fig. 6.15c is suboptimal by two units,

as can be seen from the optimal alignment that

(c)

A
B
C
D
E

gaatcgct
gaatccgt
ataaaaacccac
ataaaaaccccgg
gaatccccc

(a)

a|taaa|aa|c|ccac|-  C

a|taaa|aa|c|cccc|-

-|gaat|--|c|cccc|-
2 4 5

-|gaat|--|c|cccc|-
2 4

E

5

a|taaa|aa|c|cccg|g  D

A -|gaat|---|cgct|-
2 5

-|gaat|---|ccct|-

B -|gaat|---|ccgt|-
2 5

2 3 4 5

24

indels:  4

subc: 13

subs:  7
2 3 4 5

2

1

1

1 3 4 5 6

2 5

(d)
--|at|aaaaa|c|ccac|-  C

--|at|aaaaa|c|cccc|-

ga|at|-----|c|cccc|-
21 4 5

ga|at|-----|c|cccc|-
1 2

E

4 5

--|at|aaaaa|c|cccg|g  D

A  ga|at|------|cgct|-
1 2 5

ga|at|------|ccct|-

B  ga|at|------|ccgt|-
1 2 5

2 3 4 5

24

indels:  4

subc: 15

subs:  5
2 3 4 5

2 3 4 5 6

1 2 5

(b)
ataa|aaa|c|ccac|-  C

ataa|aaa|c|cccc|-

gaat|---|c|cccc|-
1 3 4

gaat|---|c|cccc|-
1 3

E

4

ataa|aaa|c|cccg|g  D

A  gaat|----|cgct|-
1 4

gaat|----|ccct|-

B  gaat|----|ccgt|-
1 4

1 2 3 4

24

indels:  3

subc: 13

subs:  8
1 2 3 4

1 2 3 4 5

1 4

Figure 6.14 An example of the parsimony criterion for sequence characters. (a) A sequence character. (b, c, d) Three optimal tree alignments on its

optimal tree. Subs, subc, and indels are numbers of substitutions, subcharacters, and indel events. Single bars across branches indicate substitutions,

double bars indel events. Logical subsequences are indicated using vertical bars, and numbered for clarity.
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is shown. Under the costs of Frost et al. (2001)

the tree alignments of Figs 6.15b and 6.15c are

also optimal for their respective trees, but the

ranking of the trees reverses: the second tree is

now preferred (costs 14 vs. 13). This shift in

preference is a consequence of counting an indel

event of length k as k events, as implicitly

advocated by Frost et al. (2001). In this exam-

ple, this amounts operationally to treating the

lengths of the gaps that are involved as an

ordered character.

A more extreme example of the same pheno-

menon occurs with a sequence character such as

ttaatt, ttaaatt, ttaaaatt, and ttaaaaatt for terminals

A, B, C, and D. With the cost regime of Frost et al.

(2001), unrooted tree (A B)(C D) is preferred

because, operationally, it best groups the series of

a’s in the middle of the observed sequences

according to their length. With the cost regime that

maximizes homology, the three different unrooted

trees for four terminals are considered equally

good explanations of the character.

The preference of Frost et al. (2001, pp. 354–

355) for equal substitution and unit gap costs

follows from their position that all hypothesized

evolutionary transformations should be weighted

equally. However, this cost regime only accom-

plishes such equal weighting under the very

restrictive assumption that indels only affect

single bases, which constitutes a severe knowl-

edge claim about the processes that shape

sequence evolution. It is hard to see then how

this approach ‘maximizes the explanatory power

of all lines of evidence’ (Frost et al. 2001, p. 354)

even more so if one considers their apparent

position that methods that make severe know-

ledge claims can be safely ignored (Frost et al.

2001, p. 354). No comparable claim is present in

the current method, in which the lengths and

positions of subsequences that take part in indel

events are left open to optimization.

A similar methodological asymmetry exists

between methods that impose irreversibility

of inferred character evolution and methods

that leave the possibility of reversal open

during phylogenetic analysis. An extensive dis-

cussion of the issues that are involved can be

found in Farris (1983, pp. 24–27). Frost et al.

(2001) did not discuss such issues. In fact, they

did not not even provide arguments why

equal weighting of all evolutionary transforma-

tions should lead to equal substitution and unit

gap costs. It can reasonably be argued that

the principle of equal weighting of all transforma-

tions is instead better implemented by using equal

substitution and gap costs, irrespective of the

length of the gaps that are involved. However,

for most sequence characters this cost regime

(b)
A
B
C
D

ggaaaaaaaaaat
ggaaat
ccat
ccaaaaaat

(a)
gga|aa|aaa|aaaa|t  A

gga|aa|aaa|----|t

gga|aa|-------|t  B

C  cca|---------|t
1 5

cca|aa|aaa|----|t

D  cca|aa|aaa|----|t
1 2 3 5

1 2 3 4 5

1 2 3 5 1 2 3 5

1 2 5

(c)
gga|aa|aaa|aaaa|t  A

gga|aa|aaa|----|t

cca|aa|aaa|----|t  D

B  gga|aa|-------|t
1 2 5

gga|aa|-------|t

C  cca|---------|t
1 5

1 2 3 4 5

1 2 3 5 1 2 5

2 31 5

Figure 6.15 An example of the parsimony criterion for sequence characters. (a) A sequence character. (b) An optimal tree alignment on the

optimal tree. (c) An optimal tree alignment on a suboptimal tree. Single bars across indicate substitutions, double bars indel events. Logical

subsequences are indicated using vertical bars, and numbered for clarity. The number of subcharacters in both optimizations is the same.
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would lead to trivial alignments such as in

Fig. 6.13c, requiring only as many transformations

as there are terminals, irrespective of the tree

that is considered. Again, it is hard to see

how such optimizations can be considered to

maximize explanatory power. Yet they are optimal

under the notion of minimizing equally weighted

transformations.

Sequence characters and branch support

The example of Fig. 6.13 illustrates an interest-

ing consequence for the concept of branch sup-

port. Consider the tree alignment of Fig. 6.13b.

In that alignment, the (A B)(C D) branch is

supported, not because of the four substitutions

on that branch, but because collapse of the

branch—resulting in an unresolved tree—would

remove either the a–a base match between A and

B or the t–t base match between C and D. This

is in line with the observation of Farris et al.

(2001a) that branch lengths do not measure sup-

port. Instead, support for any single branch is

measured as the degree to which removal of

the branch worsens the explanation of the

data, which holds for sequence and non-sequence

data alike. This, by definition, is Bremer (1988)

support.

Alternatively, one could measure robustness of

a branch using the jackknife (Farris et al. 1996) or

related methods. However, as sequence char-

acters have no predefined single-column char-

acters, pseudoreplicates cannot be constructed in

the usual way. This problem can be solved by

resampling at the level of individual bases in the

sequences to be compared, such that unsampled

bases are made uninformative with a probability

equal to the character removal probability of

regular jackknifing (operationally, this can be

done by replacing a base with a polymorphism

code for ‘a or c or g or t or -’; or, a bit more

conservative, for ‘a or c or g or t’). With a

removal probability of 0.37, the (A B)(C D)

branch in the above example would not survive,

as it depends on the simultaneous presence of

the four bases mentioned above. With the con-

servative approach, the probability that all four

are retained in a pseudoreplicate is only

(1� 0.37)4.

A likelihood conjecture

Miklós et al. (2004) recently described a probabil-

istic model of sequence evolution that allows

insertions and deletions of arbitrary length, a more

general approach than Thorne et al. (1992), the first

probabilistic method that incorporated indels that

affect multiple residues at once. In their model,

substitutions are described using a regular time-

reversible rate matrix; indels are modelled such

that the rates for insertions as a function of their

length k are a geometric function of k, and such

that the ratio between the rates of insertions and

deletions of length k is a constant.

Miklós et al. (2004) only dealt with comparisons

of two sequences, but the model can in principle

be extended to simultaneous comparison of more

than two sequences that are related by a binary

tree, similarly as Hein (2001) extended the two-

sequence model of Thorne et al. (1991), the first

stochastic model to include insertions and dele-

tions (single residue indels only). In the approach

of Hein (2001), rate parameters are assumed to be

constant throughout the sequences. Removal of

assumptions of that kind would turn the model

into a no-common-mechanism model akin to the

model of Tuffley and Steel (1997, pp. 584, 597) for

regular r-state characters.

Envisioning such a double extension of the

model of Miklós et al. (2004) it can be conjectured

that, under a wide range of possible non-fixed

rates, the trees that are found with a parsimony

criterion along the lines as described here are also

trees of maximum likelihood. As with single-

column characters (see above), this does not

imply that such a probabilistic process model

would exhaustively describe and capture the

current method.

Beyond sequence characters: the genome

Most examples above consist of data sets with just

a single sequence character, but data sets can have

several such characters, and in addition any

number of single-column characters. Exactly

which observations are coded as characters, the

subject of character analysis, is ultimately outside

the realm of the technical aspects of further ana-

lysis that have been discussed in this section. For

sequence characters, a widely used criterion for
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establishing hypotheses of putative sequence

homology is almost identical to the technology to

obtain those sequences in the first place: whatever

is amplified using a particular primer pair. In

addition, various other criteria can be used to

identify biologically relevant structures, such as

exons and introns in protein coding sequences,

or stems and loops in rRNA sequences (see, e.g.,

Kjer 1995; Giribet 2002).

On the basis of such criteria, even contiguous

stretches of the genome can be subdivided

into sequences of sequence characters that can

be optimized separately. When doing so, it

may be a legitimate concern that the subsequent

analysis might be constrained and even biased

by preconceived ideas about the evolution of

such structures. However, given that the com-

plexity of the calculations when dealing with

sequence characters makes the use of heuristics

and approximations unavoidable, the procedure

of breaking up long sequences in smaller com-

ponents prior to analysis may very well be part

of a heuristic search strategy. This approach

could be especially powerful when combined

with heuristic multiple alignment methods that

try to assemble global alignments from align-

ments of fragments that are dynamically identi-

fied (e.g. Morgenstern et al. 1996; Morgenstern

2004).

On a more fundamental level, sequence char-

acters as discussed here are thought to be hier-

archically related through indels and substitutions

only. This may be a biologically plausible

assumption for shorter parts of the genome, but it

definitely breaks down for complete genomes,

where other processes such as inversions, dupli-

cations, and translocations play a role as well.

Over the past few years, many combinatorial

algorithms have been developed to study such

phenomena (see, e.g., Sankoff and Nadeau 2000),

and heuristic multiple-alignment methods that

incorporate such rearrangment events are becom-

ing available (see, e.g., Brudno et al. 2003, 2004).

It remains an open question how such methods

can be interpreted or generalized to accomodate

a parsimony criterion as developed here.

Such extensions may well lead to revisions or

further elaborations of the current framework.

Consider, for example, a process such as lateral

transfer, which may well play an important

role in the evolution of genomes (see, e.g.,

Kunin and Ouzounis 2003), or speciation

through allopolyploidization (see, e.g., Vander

Stappen et al. 2002). For any data set, positing

sufficient such events in any phylogenetic tree

will permit to explain all observed similari-

ties as historically identical, whether through

regular ancestor–descendant relationships of

organisms or through non-hierarchic processes

such as lateral transfer. It may be sufficient

to restrict the current criterion to the former

case, but, alternatively or additionally, a more

general criterion might be conceived that max-

imizes the difference between similarity that can

be explained as historical identity, whatever the

underlying processes, and the minimum number

of hypothesized historical events required to

that effect.

This second approach would need careful

elaboration of a broader theoretical concept of

explanation than used here, which is beyond the

scope of this chapter. However, one way to go

would be to couple the principle of maximizing

conformity between observation and theory to the

principle of choosing the simplest theory or the-

ories that can explain the data, which would lead

to a true synthesis of two different but interwoven

lines of argument that can be found in the work

of Farris (see, e.g., Farris 1982b, 1983). As dis-

cussed extensively in this paper, the first principle

leads to maximization of similarity that can be

explained as homology. The second principle

requires a measure of the simplicity of a phylo-

genetic explanation, which may well be the

minimum number of logically distinct historical

events that have to be postulated. The rationale

for a combined optimality function as above

would then be to find an optimal balance between

both principles.

For single-column character data and under the

above restriction, that approach would opera-

tionally be equivalent to the current parsimony

criterion, because in such cases it amounts to

minimizing twice the amount of homoplasy. For

sequence characters as defined here (only indels

and substitutions), it would amount to minimizing
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2nindelsþ nsubcþ 2nsubst, which would obviously

change details of several examples discussed

in this section. For example, both trees of Fig. 6.13

are then considered equally good explanations; or

the two first trees of Fig. 6.14 become suboptimal

by two units. But the main conclusions, and

especially those based on data symmetries, would

remain valid.
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