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Standard parsimony analysis has recently been
(described in a ‘‘three-taxon-like’’ way the three-taxa

statements for contiguous series–four-taxa statements
)for contiguous series, or TTSC–FTSC procedure in

order to clarify the differences between the standard
approach and three-taxon analysis. It is shown that the
alleged equivalence of standard parsimony analysis and
the TTSC–FTSC procedure does not hold. Some minor
defects of the procedure can be fixed within the TTSC–
FTSC logic, but no solution is available for two basic

( )problems: 1 the elementary three-taxon-like state-
ments of the TTSC-FTSC procedure are highly artifi-

( )cial; and 2 the equivalence with standard parsimony
depends on an incomplete correction for nonindepen-
dence between these statements. However, these
findings do not invalidate the reported superiority
of standard parsimony as a method for biological
systematics. Q 1998 The Willi Hennig Society

INTRODUCTION

Ž .Deleporte 1996 recently described the TTSC]FTSC
Žprocedure three-taxa statements for contiguous

.series]four-taxa statements for contiguous series and
claimed that it exactly reproduced, in terms of ele-
mentary three-taxon-like statements, the standard

Žparsimony logic for testing cladograms Deleporte,
.1996: 274, 279 . Using this three-taxon-like formula-

tion of the standard approach as a means to analyse

the differences between standard parsimony analysis
Ž .  Že.g. Farris, 1983 and three-taxon analysis Nelson

.and Platnick, 1991 , Deleporte’s main conclusion was
that the standard approach is logically superior to
three-taxon analysis as a method of biological sys-
tematics. However, as shown in this paper, the
TTSC]FTSC procedure is not equivalent to standard
parsimony analysis, which might invalidate this
conclusion.

We will first discuss the underlying logic of the
TTSC]FTSC procedure, which will then serve as a
framework to explain why standard parsimony and
the TTSC]FTSC procedure are not equivalent. At the
same time we will investigate whether slight modifi-
cations andror extensions of the TTSC]FTSC logic
might suffice to obtain the claimed equivalence, and
we conclude that this is not the case. Lastly, we will
examine whether the lack of equivalence between the
TTSC]FTSC procedure and standard parsimony

Ž .affects Deleporte’s 1996 additional argumentation in
favour of the standard approach.

THE UNDERLYING LOGIC OF THE
TTSC–FTSC PROCEDURE

In standard parsimony analysis, the best trees are
those that minimize homoplasy for the data at hand
Ž . Ž .Farris, 1983 . Deleporte 1996 did not explicitly state
the logic he followed to develop a three-taxon-like
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FIG. 1. Paraphyletic group EFG requires two steps, which is one
less than the number of 1-terminals it contains; monophyletic
group KLM requires a single step, which is two less than the
number of 1-terminals it contains. Compared to an independent
origin of state 1 in all 1-terminals, this yields a total of three saved
extra steps.

formulation of this standard optimality criterion.
However, because this underlying logic provides an
accurate framework within which to discuss and
evaluate the TTSC]FTSC procedure, its examination
is worthwhile. For our purpose it can be recon-
structed as follows.

First consider the idea of saved extra steps. Assume
a polarized binary character without missing entries
and with character state 1, the apomorphic state,

Žpresent in na terminals the 1-terminals; the termi-
.nals with state 0 are referred to as the 0-terminals . If

all na 1-terminals have developed their state inde-
pendently, the explanation of the character-state
distribution requires na steps on any cladogram.
However, when common descent is taken into
account, particular configurations of 0-terminals and
1-terminals require less steps than the number of
1-terminals that are present in the configuration. The
difference between the number of 1-terminals and the
required number of steps when common descent is

Žconsidered is called ‘‘saved extra steps’’ Deleporte,
.1996: 275 .

This is illustrated in the cladogram and the charac-
ter of Fig. 1. There are two step-saving configura-
tions: the monophyletic group of 1-terminals K, L and
M; and the paraphyletic group of 1-terminals E, F
and G. The monophyletic group, consisting of three
taxa, can be explained by a single step and therefore
there are two saved extra steps; the paraphyletic
group, consisting of three taxa, can be explained by
two steps, yielding a single saved extra step. The
number of steps under the standard parsimony crite-

Ž .rion ss3 is then obtained as the difference between

FIG. 2. The number of saved extra steps is not necessarily equal
to that part of the maximum possible homoplasy in the character
that is not realized on the cladogram.

the total number of 1-terminals and the total number
of saved extra steps. Note that in this example the
number of 1-terminals is equal to g, the length of the

Ž .character on an unresolved tree Farris, 1989 . As a
result the total number of saved extra steps is equal
to that part of the maximum possible amount of

Ž .homoplasy in the character gym; Farris, 1989 that
is not realized on the cladogram: the number of
saved extra steps equals gys. However, this is only
true because the number of 1-terminals does not
exceed the number of 0-terminals. An example where
less than half of the terminals have the plesiomorphic
state is presented in Fig. 2.

Ž .Deleporte 1996: 275 observes that the best trees
under standard parsimony are those trees that maxi-
mize the total number of saved extra steps as defined
above. Using this observation and the idea of
step-saving configurations, the underlying logic of
Deleporte’s derivation of the TTSC]FTSC procedure
can be reconstructed as follows.

1. Catalogue all possible step-saving configurations
into a limited number of types, each with a specific
number of saved extra steps.
2. Define for each type of configuration a type of
elementary three-taxon-like statement such that the
number of saved extra steps in the configuration
equals its number of supported three-taxon like
statements.

This two-step procedure results in a three-taxon-like
formulation of the standard approach only if the
classification of step-saving configurations satisfies
the two following conditions.

1a. Any tree and character can be decomposed

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved



TTSC]FTSC 241

into configurations of these types; this condition
ensures general applicability.
1b. The total number of saved extra steps in the
character on the tree is obtained as the sum of the
saved extra steps in each of the constituent con-

Žfigurations i.e. there are no step-saving inter-
.actions between configurations ; this condition

ensures that each configuration type can be treated
Žindependently in the second step as is the case in

.the TTSC]FTSC procedure .

We show below that, according to one’s point of
view, the TTSC]FTSC procedure satisfies either the
first or the second condition, but not both conditions

Ž .simultaneously. Deleporte’s 1996 classification of
configurations will be extended to satisfy both condi-
tions, but the extension will be of little help because
the TTSC]FTSC procedure is also deficient in the
second step.

STEP-SAVING CONFIGURATIONS

TTSC–FTSC Procedure

In the TTSC]FTSC procedure, only two types
of step]saving configurations are considered
Ž .Deleporte, 1996: 276, 278]279 .

Type A. Monophyletic groups of 1-terminals, such
as component KLM in Figs 1 and 2; a type A

Ž .configuration with p 1-terminals yields py1
saved extra steps.
Type B. Paraphyletic series of at least three con-
tiguous 1-terminals, such as taxa E, F, and G of
Figs 1 and 2; a type B configuration with q

Ž .1-terminals yields qy2 saved extra steps.

The term ‘‘series’’ usually implies pectinate group-
ing and therefore, strictly speaking, the paraphyletic
group of 1-terminals C]I in Fig. 3 is not covered by
the TTSC]FTSC logic. However, this is only a minor
problem which is easily overcome by a slight redefi-
nition of type B configurations as paraphyletic groups
Ž .instead of series of 1-terminals that require two
steps.

No such easy solution is available for cases such as

Ž .FIG. 3. A nonpectinate paraphyletic group C-I which requires
two steps.

shown in Fig. 4. The character has six 1-terminals
which are grouped in a single non-pectinate para-
phyletic group. The character can be explained in
three steps, which amounts to three saved extra steps.

Yet, because the 1-terminals are neither in an A nor
in a B configuration, the TTSC]FTSC logic cannot

Ž .account for this configuration cf. condition 1a . Alter-
natively, one could argue that the paraphyletic group

ŽCDEFGH consists of two subgroups of type B CDE
.and FGH , each with three 1-terminals. However,

given the character at hand this decomposition is
artificial and, more importantly, it does not solve the
problem; it only yields two saved extra steps, one for

Ž .FIG. 4. A nonpectinate paraphyletic group C-H which requires
more than two steps. Considering CDE and FGH as two type B
configurations fails to account for the saved extra step that results
from the interaction between both subgroups.
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each type B configuration. The third saved extra step,
resulting from the interaction between both sub-

Ž .groups, is ignored cf. condition 1b . Note that a
group such as CDEFGH in Fig. 4 is paraphyletic
rather than polyphyletic because it can be united by

Ž .symplesiomorphies Farris, 1991 , but that the
reported problem does not depend on this designa-
tion. Indeed, it has been argued that such a group is

Žpolyphyletic rather than paraphyletic e.g. Nelson,
1971; Oosterbroek, 1987; see Farris, 1991, for a discus-

.sion , but even if this were accepted, it would not
change the fact that it requires three steps rather than
two.

These problems are not limited to nonpectinate
cladograms, as can be seen in Fig. 5. The eight
1-terminals all belong to a single paraphyletic group
which requires three steps, amounting to a total of
five saved extra steps. Because the 1-terminals of the
paraphyletic group are not contiguous in the pecti-

Žnate series 0-terminal F interrupts the series of
.1-terminals , the pattern of 1-terminals is no type B

configuration and the TTSC]FTSC logic cannot
account for the configuration. As in the above exam-
ple, one could argue that paraphyletic group
CDEGHIJK is composed of two paraphyletic sub-
groups of type B: CDE and GHIJK. However, as
above, this decomposition is both artificial, given the

FIG. 5. A pectinate cladogram with a paraphyletic group
Ž .CDEGHIJK which requires more than two steps. Considering
CDE and GHIJK as two type B configurations fails to account for
the saved extra step that results from the interaction between both
subgroups.

character at hand, and of no help; it yields only four
saved extra steps. The fifth saved extra step, resulting
from the interaction of both configurations, is
ignored. Similar interactions may arise between type
A and type B configurations.

In summary, two alternative conclusions are pos-
Ž .sible at this point. 1 The TTSC]FTSC procedure is

deficient either because it does not cover all possible
Ž .step-saving configurations, or 2 if these uncovered

configurations are shoehorned into the acknowledged
configurations, because it does not cover interactions
that may occur between configurations.

Contiguity

Ž .Deleporte’s 1996 classification of step-saving con-
figurations can easily be completed such that it
allows all cladograms and characters to decompose
into configurations that are free from interactions.
The concept of contiguity, discussed by Deleporte
Ž .1996: 274]275 at the onset of his argumentation,
provides a clue for doing so. Deleporte gives the
concept a precise meaning by relating it to the well-
known concepts of secondary homology and charac-
ter optimization: for a given character and
cladogram, a number of terminals carrying the same

Ž .character state are contiguous in contiguity on the
cladogram when that character state is secondarily

Žhomologous in these taxa see de Pinna, 1991, for
.secondary homology . In this way, contiguity points

to hypothesized historical continuity of the character
state on the cladogram. From a practical point of
view, detection of this hypothesized historical conti-
nuity requires optimization of the character on the
inner nodes of the cladogram. Note that the ‘‘contigu-
ity status’’ of a group of terminals on a cladogram
may be ambiguous with respect to a single character
because the character may have multiple optimiza-
tions on the cladogram.

Ž .Deleporte 1996 apparently did not observe that
this concept of contiguity almost directly yields a
proper classification of step-saving configurations.
One of the reasons may be that after his initial discus-
sion of contiguity he quickly starts using the same
term in a more restrictive sense, seemingly without
noticing the restriction. An example can be found in
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FIG. 6. Character state 1 has historical continuity across all
1-terminals of the pectinate series C]K, but within the pectinate
series these 1-terminals are not all adjacent, hence the paraphyletic
group consisting of all 1-terminals requires more than two steps.

the following quote:

‘‘In the classical formulation of the standard approach, a
paraphyletic series of contiguous taxa carrying state 1 on a
cladogram is counted as two steps: one apparition of the
derived state, and one extra step which is a reversal at the

Ž .‘‘distal end’’ of the series’’ Deleporte, 1996: 278 .

This is only true if ‘‘contiguous’’ refers to adjacency
in the pectinate series, which is more restrictive than
referring to historical continuity. This is illustrated in
Fig. 6, showing the same pectinate cladogram and
character as in Fig. 5 but with the inner nodes opti-
mized. Character state 1 is in complete historical
continuity on the cladogram and therefore the
1-terminals are contiguous in the first sense. How-
ever, the 1-terminals themselves are not all adjacent
in the pectinate series, and therefore they are not
contiguous in the second sense; as a result the group
requires more than two steps.

For a given cladogram and optimized character, the
character state transitions divide the cladogram into a
number of ‘‘contiguity zones’’, zones in which either

Žstate 0 or state 1 is secondarily homologous we will
refer to these as 0-contiguity zones and 1-contiguity

.zones respectively . The number of steps of the char-
acter can be obtained by considering, one by one, the
1-contiguity zones, and to count the number of neigh-

bouring 0-contiguity zones for each such zone. If the
1-contiguity zones are seen as step-saving configura-
tions, it follows that there are no step-saving interac-

Ž .tions between configurations condition 1b ; general
Ž .applicability condition 1a is met because any char-

acter can be optimized on any cladogram. A natural
classification of 1-contiguity zones is provided by
counting the number of neighbouring 0-contiguity
zones, which amounts to counting the number of
steps that are associated with the configuration. The
TTSC]FTSC procedure treats only 1-contiguity zones

Ž 1.which require one type A configurations or two
Ž .type B configurations steps; all other cases are
ignored.

An example of the decomposition of a cladogram
and a character into a number of non-interacting
step-saving configurations is presented in Fig. 7. The
character has two possible optimizations on the
cladogram, both of which are shown. The first opti-
mization has one 1-contiguity zone, in which all eight
1-terminals are present. The zone has four neighbour-
ing 0-contiguity zones, leaving four saved extra steps.
The alternative optimization has two 1-contiguity
zones. The first one, BCDEFH, has six 1-terminals
and three neighbouring 0-contiguity zones, leaving
three saved extra steps; the second 1-contiguity zone,
LM, has two 1-terminals and one neighbouring
0-contiguity zone, leaving a single saved extra step.
The total number of saved extra steps in both con-
figurations is four, which is the same result as
obtained with the first optimization.

Note that the decomposition procedure is basically
a convoluted way of calculating the steps of a charac-
ter on a cladogram and not intended nor recom-
mended for regular use; its only purpose is to show

Ž .why Deleporte’s 1996 TTSC]FTSC procedure does
not always work correctly and to examine if a correct
TTSC]FTSC-like procedure can be devised.

THREE-TAXON-LIKE STATEMENTS

The TTSC]FTSC procedure derives its name from
the types of three-taxon-like statements that are

1 It is assumed that the cladogram is rooted by means of a real
Žor hypothetical outgroup that has state 0 Nixon and Carpenter,

.1993 .
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FIG. 7. When a character has multiple optimizations on a clado-
gram, there are alternative possibilities for decomposing the
cladogram into non-interacting configurations. See text for further
explanation.

associated with type A and type B configurations
Ž1-contiguity zones requiring respectively one and

.two steps : TTSCs or three-taxa statements for con-
tiguous series with type A configurations and FTSCs
or four-taxa statements for contiguous series with

Ž .type B configurations Deleporte, 1996: 276, 279 . To
obtain a general three-taxon-like formulation of stan-

dard parsimony, similar three-taxon-like statements
should also be defined for 1-contiguity zones which
require more than two steps. This could be done in
analogy with TTSCs and FTSCs and, therefore,
we will first examine the logic of associating these
three-taxon-like statements with type A and B
configurations.

TTSCs

ŽConsider a polarized binary character state 1 apo-
.morphic with np 0-terminals and na 1-terminals,

and a cladogram on which the optimized character
specifies one or more monophyletic groups that have

Ž .state 1 type A configurations . A three-taxon state-
ment for the character is a statement about any two
taxa which have the apomorphic state and any third

Žtaxon that has the plesiomorphic state Nelson and
.Platnick, 1991 . If both 1-terminals of a three-taxon

statement belong to the same type A configuration,
the statement is called a TTSC for that configuration
Ž .Deleporte, 1996: 276 . An example is shown in
Fig. 8. The character has two 0-terminals and five

Ž .1-terminals, yielding 2) 5)4r2 s 20 three-item
Ž .statements see, e.g. Nelson and Ladiges, 1992: 490 .

On the given cladogram, the optimized character
specifies two type A configurations: BCD and FG.

Ž . Ž . Ž . Ž .BCD has six TTSCs: A BC , A BD , A CD , E BC ,
Ž .  Ž .  Ž .  Ž .E BD , and E CD ; FG only two: A FG and E FG .
A type A configuration with p 1-terminals has

Ž .  Ž Ž . .py1 saved extra steps, but np) p) py1 r2
associated TTSCs. In order to obtain precisely as
many associated statements as saved extra steps, two
corrections are necessary. The first is a correction for

FIG. 8. The character has 20 three-taxon statements. Six of these
Ž .  Žin italics are TTSCs associated with BCD, while two in bold

.italics are TTSCs associated with FG.
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nonindependence, which comes down to fractional
Žweighting Nelson and Ladiges, 1992; see also Nelson

.and Platnick, 1991: 363 within each type A configu-
Ž .ration Deleporte, 1996: 276 . In the example shown

in Fig. 8, both TTSCs for FG are logically indepen-
dent, but in BCD, statements are not logically inde-
pendent: whichever two of the three statements
Ž . Ž .  Ž .A BC , A BD , and A CD are chosen, the third one is

Ž . Ž .  Ž .implied; the same holds for E BC , E BD , and E CD ,
leaving a total of four independent TTSC’s for BCD2.

Ž .  Ž ŽIn general, only np) py1 out of the np) p) py
. .1 r2 TTSCs which are associated with an A-config-

uration are independent.
Deleporte’s correction for nonindependence results

in a linear relationship between saved extra steps and
independent TTSCs: there are np times as many
independent statements as there are saved extra steps.
The proportional constant, np or the number of
0-terminals, may differ between characters. As a
result, standard parsimony logic on the one hand and
counting the number of independent TTSCs on the
other, may lead to a preference for different clado-
grams for data sets that have more than one charac-
ter. The correction for this phenomenon results in

Ž .reduced TTSCs or rTTSCs Deleporte, 1996: 278 and
hence we will refer to it as ‘‘reduction’’. Reduction
itself is straightforward. It consists of dividing the
number of independent TTSCs by the number of

Ž0-terminals Deleporte, 1996: 278; for the example in
Fig. 8 this yields two independent rTTSCs for BCD

.and one for FG . The problem lies in its interpreta-
tion. Three-taxon analysis is basically an approach
that breaks up character state distributions into the
smallest possible statements which are in themselves
still informative with respect to cladistic relation-
ships. Reduction actually removes this basic charac-
teristic from the TTSC]FTSC procedure: an rTTSC
states that two 1-terminals are more closely related to
each other than either is to any 0-terminal, which is
no longer an elementary statement in the usual

2 Note that Deleporte’s correction depends on the hidden
Ž . Ž .  Ž .assumption that A BC , A BD , and E BC do not collectively

Ž .imply E BD . The assumption would be true for three-taxon state-
Ž  Ž Ž Ž Ž Ž .....ments in three-taxon analysis e.g. for character 0 0 1 0 11  on

Ž Ž Ž Ž Ž ..... Ž . Ž . Ž .tree X A D E BC : A BC , A BD , and E BC are accommo-
Ž .  .dated, but E BD is not , but it is false for TTSCs in the standard

approach, where inner-node state assignments are taken into
Ž . Ž .account see De Laet, 1997 . Deleporte 1996 does not provide

argumentation to the contrary.

three-taxon sense. In this way, still calling the
TTSC]FTSC procedure a three-taxon-like procedure
appears to be word play which confounds rather than
clarifies.

FTSCs

Ž .Deleporte 1996: 279 defined a FTSC for a type B
configuration as a statement about four taxa, three of
which are 1-terminals belonging to the configuration
while the fourth is a 0-terminal. A problem immedi-
ately arises. FTSCs, even before reduction, are not
elementary statements as usually understood in the
three-taxon approach. They can be further decom-

Žposed into smaller statements viz. two independent
.three-taxon statements which are still cladistically

Ž .informative in themselves. Deleporte 1996 does not
provide an intrinsic reason why FTSCs should be
considered as elementary statements for type B con-
figurations. His only rationale for switching from
three-taxon to four-taxon statements seems to be the

Ž .ad hoc observation which is erroneous, see below
that this results in the required correspondence
between the number of independent reduced FTSCs
which are associated with a type B configuration and
the associated number of saved extra steps.

From the above discussion of TTSCs, it is clear that
the TTSCs which are associated with a particular type
A configuration are a subset of the three-taxon state-
ments which are supported by the cladogram in

Ž .three-taxon analysis Nelson and Platnick, 1991 . This
is no longer true for the three-taxon statements which
make up the FTSCs associated with a type B config-
uration. An example is presented in Fig. 9. The
optimized character specifies a single type B config-
uration with which 20 FTSCs are associated. How-

FIG. 9. Twenty FTSCs are associated with paraphyletic group
ŽBCDEF; maximally four of them are fully independent a possible

.set of four fully independent FTSCs is in italics . See text for
further explanation.
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ever, only those that have taxon A as 0-terminal can
be decomposed into three-taxon statements sup-

Ž Ž .ported on the cladogram e.g. A BCD is composed of
Ž . Ž .  Ž .three-taxon statements A BC , A BD , and A CD , all

.of which are supported by the tree . Exactly the
opposite holds for FTSCs with taxon G as 0-terminal:
they are completely composed of three-taxon state-
ments contradicted by the cladogram. This phe-
nomenon further complicates the interpretation of
reduction, which for FTSCs also consists of dividing
the number of independent FTSCs of a type B con-
figuration by the number of 0-terminals in the charac-

Ž .ter Deleporte, 1996: 279 . In this way, a reduced
FTSC or rFTSC simply asserts secondary homology of
state 1 in three terminals at a time. Any direct com-
parison with 0-terminals, as in the three-taxon
approach, has disappeared.

Such fundamental differences with three-taxon
analysis should come as no surprise. After all, the
TTSC]FTSC procedure tries to be an alternative for-
mulation of the standard approach, which clearly
differs fundamentally from three-taxon analysis.
However, the same observation as above can be made.
If, in spite of these differences, the TTSC]FTSC pro-
cedure is still called a three-taxon-like formulation of
standard parsimony, the differences are concealed
rather than highlighted.

The above problems could be argued away as due
to interpretation, but the FTSC logic has a more
serious defect. The supposed correspondence
between independent rFTSCs and saved extra steps is
erroneous because it depends on an incomplete cor-
rection for non-independence. A type B configuration

Ž .with q 1-terminals has qy2 saved extra steps and
Ž Ž . Ž . .  Žnp) q) qy1 ) qy2 r6 associated FTSCs np is

.the number of 0-terminals . Deleporte erroneously
Ž . 3considers np) qy2 of these logically independent .

The problem is illustrated in Fig. 9. On the clado-
gram, the optimized character specifies a single type
B configuration to which all five 1-terminals belong.
Because there are two 0-terminals, the configuration

Ž .has a total of 2) 5)4)3r6 s20 FTSCs. According to
Deleporte, a maximum of six of these are indepen-
dent, which is correct as far as it goes. Consider

3 Note that Deleporte only discusses examples and does not
provide general expressions; the expression which is given is
extracted from these examples and from his statement that ‘‘the
TTSC-FTSC logic exactly reproduces the standard character parsi-

Ž .mony logic’’ Deleporte, 1996: 276 .

Ž . Ž .  Ž .statements A BCD , A BCE and A BCF : none of
them follows from the two others. The same holds for
Ž . Ž .  Ž .G BCD , G BCE and G BCF . If it is assumed that
Ž . Ž .  Ž .A BCD , A BCE and G BCD collectively do not

Ž .imply G BCE , then these six FTSCs are truly a set of
six independent statements from which all remaining
ones can be deduced. However, if the FTSCs are
carefully chosen, a smaller set of independent state-

Ž .ments is sufficient. Indeed, the FTSCs A BCD and
Ž .A DEF together specify that taxon A is outside a

type B configuration in which 1-terminals B, C, D, E
and F are present. This is sufficient to deduce all
other FTSCs which have taxon A as 0-terminal. The

Ž .  Ž .same is true for G BCD and G DEF with respect to
the other FTSCs with taxon G as 0-terminal and
therefore the set of four independent statements
Ž . Ž . Ž .  Ž .A BCD , A DEF , G BCD and G DEF is sufficient to

deduce all remaining FTCSs associated with BCDEF.
The different results follow from the fact that FTSCs

can be partially dependent and independent at the
same time. This is best explained by considering that
FTSCs are composed of two three-taxon statements.

Ž .As an example, A BCD consists of the independent
Ž .  Ž .  Ž .three-taxon statements A BC and A CD and A DEF

Ž .  Ž .of the independent statements A DE and A EF . In
combination, this yields four independent three-item
statements and therefore the two FTSCs are fully
independent. Consider, on the other hand, FTSCs
Ž .  Ž . Ž .A BCD and A CDE . A CDE consists of indepen-

Ž .  Ž .dent three-taxon statements A CD and A DE and if
these are combined with the implied three-taxon

Ž .statements of A BCD , only three independent three-
taxon statements remain. This is more than the two
three-taxon statements which are implied by a single
FTSC, but less than four, the possible maximum.

Ž .  Ž .Therefore A BCD and A CDE are partially depen-
dent and independent at the same time. The conclu-
sion is that Deleporte’s proposed correction for
logical dependency between FTSCs only partially ful-
fils this. Note that this conclusion does not depend on
the proposed decomposition of an FTSC into two
three-taxon statements, as is clear from the example
of Fig. 9. Indeed, even if it is argued that FTSCs are
elementary statements which cannot be reduced to
three-taxon statements, the fact remains that the set

Ž . Ž . Ž .  Ž .of four FTSCs A BCD , A DEF , G BCD and G DEF
is sufficient to deduce all remaining FTCSs associated
with BCDEF and Deleporte does not provide a reason
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why the larger set of six partially redundant FTSCs
should be preferred over the smaller one in which no
redundancy is present.

w xIn general, only np) qr2 independent FTSCs are
Ž Ž . Ž . .necessary to deduce all np) q) qy1 ) qy2 r6

associated FTSCs of a type B configuration with q
Ž1-terminals the square brackets stand for the integer

.part of the bracketed expression . With q odd all of
these FTSCs will be fully independent, but with q
even two of them will be partially dependent. If more

w xthan np) qr2 independent FTSCs are considered,
unnecessary redundancy is introduced. After reduc-

w x  Ž .tion this yields qr2 independent rFTSCs for qy2
saved extra steps. In this way, the correspondence
between saved extra steps and independent rFTSCs
only holds for type B configurations which have
either three or four 1-terminals. Incidently, Deleporte
does not discuss examples in which larger type B
configurations are present.

In summary, FTSCs are problematic for the follow-
ing reasons. They are not elementary statements in
the usual three-taxon sense because they are com-
posed of smaller statements that are still cladistically
informative. Moreover, the two three-taxon state-
ments that make up a single FTSC may not be sup-
ported by the cladogram. Lastly, the association of
FTSCs with type B configurations only establishes an
exact correspondence between saved extra steps and
supported independent rFTSCs if these configura-
tions have either three or four 1-terminals.

1-Contiguity Zones which Require More than
Two Steps

According to the TTSC]FTSC logic, an elementary
statement for a 1-contiguity zone which requires one
step is a statement about two 1-terminals of that zone
and one outlying 0-terminal, and an elementary state-
ment for a 1-contiguity zone which requires two
steps is a statement about three 1-terminals and one
outlying 0-terminal. Generalizing, an elementary
statement for a 1-contiguity zone requiring s steps

Ž .would be a statement about sq1 1-terminals of
that zone and one outlying 0-terminal. This enforces
the above conclusion that the switch from three-taxon
statements in type A configurations to four-taxon
statements in type B configurations is an ad hoc

decision: the number of 1-terminals of an elementary
statement is increased such that the required corre-

Ž .spondence between saved extra steps and partially
independent reduced elementary statements is pre-
served and no intrinsic reason for considering such
statements as elementary is provided.

It could be argued that the generalization is not
valid because a 1-contiguity zone requiring s steps
may consist of only s 1-terminals, which is less than
is required for an elementary statement. However,
this is completely analogous to the FTSC case:
1-contiguity zones requiring two steps can have pre-
cisely two 1-terminals, which is insufficient for an
FTSC. From a technical point of view, this is unprob-
lematic because the group has no saved extra steps

Ž .anyway Deleporte, 1996: 279 , but at the level of
interpretation it is bizarre that a configuration can be
smaller than the elementary statements it is supposed
to be composed of. This again points to the artificial
nature of the TTSC]FTSC approach.

As with FTSCs, the correction for nonindependence
that results in the required correspondence with saved
extra steps would be only a partial correction: the
independent statements must be chosen such that
they have maximal partial dependence or minimal
partial independence.

SUMMARY AND DISCUSSION

Ž .Deleporte 1996: 279 states that ‘‘the TTSC]FTSC
procedure exactly reproduces the standard character
parsimony logic for testing cladograms’’, and he
claims that it does so in terms of elementary state-

Žments that support those cladograms Deleporte,
.1996: 275 . As explained above, this is not true for

several reasons. First, the TTSC]FTSC logic gives the
same result as standard parsimony logic only for
characters and cladograms that can be decomposed

Ž .into 1 1-contiguity zones that require precisely one
Ž .step andror 2 1-contiguity zones that require two

steps and contain precisely three or four 1-terminals.
ŽIf the 1-contiguity zones that require two steps type

.B configurations contain more than four 1-terminals,
standard parsimony logic is reproduced only if it is
accepted that nonindependence between elementary
statements must be eliminated only partially. No
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reasons are provided for such partial corrections.
Moreover, the elementary statements that are pro-
posed for type B configurations, FTSCs, are clearly
compound statements, and the TTSC]FTSC logic
provides no compelling reasons why they should not
be considered so. Lastly, the TTSC]FTSC logic cannot
deal with 1-contiguity zones which require more than
two steps. It can be extended to deal with such cases,
but this extension only highlights the artificial nature
of the elementary statements of the approach and, as
with FTSCs it depends upon arbitrary partial correc-
tions for nonindependence.

Ž .Deleporte 1996: 274 developed the TTSC]FTSC
formulation of standard parsimony in order to
improve analysis of the differences between standard
parsimony and three-taxon analysis. Given the
defects of the TTSC]FTSC procedure, it might be
expected that Deleporte’s main conclusion, of the
superiority of standard parsimony as a method for
biological systematics, is erroneous. However,
strangely enough none of the idiosyncracies of the
TTSC]FTSC procedure affect the basis of Deleporte’s
further argumentation, which hinges upon the impor-
tance of contiguity, i.e. hypothesized historical conti-
nuity of character states. As this was also the
starting point for developing the TTSC]FTSC logic
Ž .Deleporte, 1996: 274]275 , it can be argued that the
concept of contiguity is in itself sufficient for improv-

ing the ability of comparing standard parsimony and
three-taxon analysis and that the TTSC]FTSC proce-
dure becomes superfluous.
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