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The decisiveness of a data set has been defined as the
degree to which all possible dichotomous trees for that
data set differ in length, and the DD statistic (the data
decisiveness index) has been proposed to measure this
degree. In this paper, we first discuss an exact nonre-
cursive formula for the length of indecisive datasets (DD
5 0) that consist of informative binary characters in
which no missing entries are allowed. Next, the concept
of indecisive data sets is extended to data sets in which
missing entries may be present. Last, indecisive data sets
with missing entries are used as an aid to construct
hypothetical data sets that single out some of the factors

that influence the DD statistic. On the basis of these

examples, it is concluded that the concept of data deci-
siveness is too elusive to be captured into a single and
simple index such as DD. q 1999 The Willi Hennig Society

INTRODUCTION

Goloboff (1991a,b) defined the cladistic decisiveness
of a data set as the degree to which all possible resolved
trees for the data set differ in length. The decisiveness
stands for the information for tree choice that is present

in the data: the larger it is, the stronger is the conclusion
that the worst cladograms can be safely discarded.
Data sets that are fully indecisive are data sets for
which every possible dichotomous tree has the same
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length. For binary characters without missing entries,
only data sets that contain every possible informative
character state distribution in an equal number are
fully indecisive (Goloboff, 1991a; uninformative char-
acters, containing no information for tree choice, may
be added in any amount). Goloboff (1991a) defined an
indecisive data set for n taxa as a data set for n taxa
(the ingroup) to which an all-zero outgroup is added.
In this way, an informative character is a character
that satisfies both following conditions: (1) at least one
terminal taxon of the ingroup has state 0; (2) at least
two terminal taxa of the ingroup have state 1.

Two examples of indecisive data sets, one for three
and one for four taxa, are shown in Fig. 1. When no
missing entries are present, these data sets are essen-
tially the only indecisive data sets that exist for three
and four taxa. Besides adding uninformative charac-
ters, the only possible variation is to repeat every char-
acter for an equal number of times. We will refer to an
indecisive matrix that contains all possible informative
characters for an ingroup of n taxa precisely once as
the minimal indecisive matrix for n taxa or MIM(n).
Note that the matrix has n 1 1 taxa because the all-
zero outgroup has to be added. Because all characters

are binary the ensemble observed variation of MIM(n),
M(n), is equal to its number of characters: 2n 2 n 2 2
(Goloboff, 1991a).

Goloboff (1991a) provided equations to calculate



matrices indecisive data sets with missing entries.

possible dichotomous trees for the first data set have 5 steps; all

possible dichotomous trees for the second data set have 18 steps.

S(n), the length of MIM(n) on a fully resolved tree, and
G(n), the length of MIM(n) on an unresolved bush. His
equation for S(n) is exact for n $ 7, but it is difficult to
calculate because it is recursive and because it contains
many nested summation operators. A general (n $ 3)
nonrecursive equation (Fig. 2) follows directly from
Steel’s (1993; see also Steel and Charleston, 1995) exact
nonrecursive formula for the expected character length
of random binary characters on random trees (see the
Appendix for details). An alternative derivation of this
equation and its relation to the results of Archie (1989)
and Archie and Felsenstein (1993) are discussed in the
Appendix. For G(n), Goloboff (1991a:220) provided
two exact equations, one for n even and one for n odd,
each with one summation operator. Their equivalents
without summations were discussed by Steel (1993:
259). The single encompassing equation shown in Fig.
2 is derived in the Appendix.

Goloboff (1991a) restricted his discussion of fully
indecisive data sets to data sets without missing en-
tries. Below, we will first discuss how indecisive data
sets can be constructed when missing entries may be

present. Next we will evaluate the DD index (Goloboff,
1991a), an index that was proposed to measure the

of steps on an unresolved bush, G(n), for minimal indecisive data
sets with n taxa, n $ 3. (n

i
) stands for n!/(i!* (n 2 i)!), [n/i] for the

integer part of n/i.
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number of hypothetical data sets that contain as sub-
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FIG. 1. Minimal indecisive data sets for three and four taxa 1 all-
zero outgroup. An Ai character is a character with i 1-entries. All
only three-taxon statements. Note that the upper
decisiveness of data sets. To do so, we will present a

FIG. 2. Number of steps on a dichotomous tree, S(n), and number
These examples will enable us to single out and illus-
trate some factors that influence DD.

MISSING ENTRIES AND INDECISIVENESS

Allowing missing entries, the basic observation is
that an indecisive data set for n 1 1 taxa can be pro-
duced simply by adding a row of missing entries to
an indecisive data set for n taxa. An example, for three
taxa, is shown in the left part of Fig. 3. Less trivial
cases are obtained by combining several such data sets
(Fig. 3, middle), or by combining such sets with indeci-
sive data sets without question marks (Fig. 3, right).

A more elaborate example for five taxa 1 outgroup is
shown in Fig. 4. The data set consists of four indecisive
submatrices: MIM(5), MIM(4) 1 one row of missing
entries, and two times MIM(3) 1 two rows of miss-
ing entries.

Because the addition of one or more rows of missing
entries to a data set does not influence S or G, the
above equations can be used for the indecisive subma-
trices, each time substituting the total number of taxa
in the submatrix for its number of taxa that do not
have missing entries: n 5 5 for the first submatrix
(S1 5 51, G1 5 60), n 5 4 for the second one (S2 5 18,
G2 5 20), and n 5 3 for the last two (S3 5 S4 5 5,
G3 5 G4 5 6). Precisely because the four composing
subsets are indecisive, their S and G values can be
added to obtain the values of G and S for the complete
data set (S 5 79, G 5 92).

Knowing that M 5 2n 2 n 2 2, and using the above
equations for S and G, the upper and lower bounds
for the ensemble consistency index CI (CI 5 M/S;
Kluge and Farris, 1969) and the ensemble retention
index RI (RI 5 (G 2 S)/(G 2 M ); Farris, 1989) for
indecisive data sets can be plotted.

The possible ranges for CI are given in Fig. 5. The
lower bound (black dots) is achieved when no missing
entries are present and decreases as n increases (cf. Fig.
1 in Goloboff, 1991a). The constant upper bound of
CI 5 0.6 is reached in indecisive data sets that contain
bound can be exceeded by adding autapomorphies.
The possible ranges for RI are shown in Fig. 6. The
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FIG. 3. Some examples of indecisive data sets that contain missing

lower bound of RI 5 0.2 is reached in indecisive data
sets that contain only four-item statements, the upper
bound of RI 5 0.33 is reached in indecisive data sets
that contain only three-item statements. The retention
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indices of minimal indecisive data sets without missing

1 and 2 contain only informative characters and are
entries are indicated as black dots (cf. Fig. 3, Goloboff,
1991a); it oscillates asymptotically to 1/3.

MEASURING DECISIVENESS: THE DATA
DECISIVENESS INDEX DD

Goloboff (1991a) rejected CI, RI, and RC (the ensem-
ble rescaled consistency index RC 5 CI*RI; Farris, 1989)
as measures for data decisiveness because none of these
statistics reaches its minimum in indecisive data sets.
Therefore, the homoplasy and the decisiveness of a
data set are two different things, and Goloboff (1991a)
proposed a new statistic, the DD index or data decisive-
ness index, to measure the latter. He defined DD as
the scaled difference between the length of a most
parsimonious tree for a data set (SMIN ) and the the
mean length of the data set on all possible resolved
trees (S):
FIG. 4. A compound indecisive data set for five taxa.
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The scaling is such that data sets without homoplasy
(SMIN 5 M ) have a DD value equal to 1. Indecisive
data sets, having the same length on every resolved
tree, have a DD value equal to 0. DD is not directly
influenced by the homoplasy of a data set because S,
the mean length of a data set on all possible resolved
trees, does not depend on the congruence between
the characters in the data set (Le Quesne, 1989), and
Goloboff (1991a: 226) concluded that DD directly mea-
sures decisiveness: “higher values of DD imply that
the possible trees for the matrix differ more in tree
length, and therefore [higher DD values] imply more
decisiveness” (Goloboff, 1991a: 226). However, below
it is shown by example that higher DD values do not
necessarily imply more differences in the length of
possible trees.

A first pair of hypothetical data sets is presented in
Fig. 7. Both data sets consist of an indecisive part and
a decisive part. The decisive submatrices are identical
in both sets, but the indecisive submatrices are differ-
ent. Since the decisive parts are identical and consist
of characters that are fully congruent among them-
selves, the same single most parsimonious tree is found
in both cases. The indecisive submatrices of data sets
constructed such that they require the same length;
the difference lies in the number of characters: theDD 5

S 2 SMIN

S 2 M
.
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FIG. 5. Possible ranges of ensemble consistency index CI(n) for ind

indecisive subset of data set 1 has only 25 characters
(MIM(5)), while the indecisive subset of data set 2 has

29 characters (2 times MIM(4) 1 3 times MIM(3)). As

FIG. 6. Possible ranges of ensemble retention index RI(n) for indecisi
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It follows that both data sets have an identical distri-
bution of tree lengths (Fig. 8), implying that the possi-
28 De Laet and Smets
ble trees for data set 1 do not differ in tree length from

the possible trees for data set 2. Nevertheless both dataa result, the two data sets have the same minimal length

but a different M and G (see Fig. 7). sets have different DD values: DD is equal to 0.10 for
ve data sets with n taxa.
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be argued that the possible trees for data set 3 do not
FIG. 7. Two data sets with an indecisive part (left) and a decisive p
unambiguously resolves the relationships between taxa A-E as on the

the first but 0.12 for the second (the mean number of
steps is 6093/105 in both cases). Put the other way
around, the higher DD value of data set 2 does not
imply that its possible trees differ more in length than
those of data set 1.

Just as data sets 1 and 2, the two data sets shown in
FIG. 8. Data sets 1 and 2 (Fig. 7) have an identical distribution of tre
the values of M and G are indicated.
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rt (right, bold). The decisive part is identical in both data sets and it
tree that is shown.

such that they have the same M and G, but a different
SMIN. As a result, the distributions of possible tree
lengths for both data sets have the same shape, but
they are shifted with respect to each other (Fig. 10).
Even though the distributions are shifted, it can still
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Fig. 9 have an identical decisive part and a different differ more (or less) in tree length than do the possible
trees for data set 4. Nevertheless, they have differentindecisive part. The indecisive parts are constructed
e lengths (only fully resolved trees are considered). For each data set,
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FIG. 9. Two data sets with an indecisive part (left) and a decisive
unambiguously resolves the relationships between taxa A-D as on th

DD values: DD equals 0.0740 for data set 3 and 0.0625
for data set 4 (the mean number of steps is 53.6 and
57.6, respectively).

In the two above comparisons, the different DD val-
ues are caused by the different homoplasies of the data
sets being compared. More precisely, the sensitivity of
DD to the amount of homoplasy in data sets follows
from the presence of M in the scaling factor (DD’s

denominator) that scales the decisiveness to 1 for data

FIG. 10. The distributions of tree lengths (fully resolved trees only) fo
with respect to each other. M and G are the same for both data sets.
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art (right, bold). The decisive part is identical in both data sets and it
tree that is shown.

M, is by definition the mean homoplasy of the data
set over all trees. In this way, DD can be rewritten
as the complement of the ratio of minimal and mean
homoplasy (see also Archie, 1994):

DD 5 1 2
HMIN

H
.
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To remove DD’s sensitivity to H, DD could be rede-

fined such that it refers only to factors that describesets without homoplasy. This scaling factor, the differ-

ence between the mean step number over all trees and the distribution of tree lengths, which would turn DD
r data sets 3 and 4 (Fig. 9) have an identical shape, but they are shifted
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into a descriptor of some aspect of the shape of that
distribution. However, if this were done one would
have to conclude that data set 4 (Fig. 9; DD 5 0.0625)
and data set 5 (Fig. 11; no homoplasy, so DD 5 1),
consisting of the decisive part of data set 4, would have
the same power to discriminate between trees, because
the shapes of their tree length distributions are identi-
cal. Assuming that all characters in a data set are solid
hypotheses of primary homology (de Pinna, 1991), this
seems difficult to defend (even though both data sets
yield identical Bremer supports; Bremer, 1988; Farris,
1996): in data set 5 all available evidence is congruent
with the same single branching pattern, while data
set 4 is full of contradicting evidence. Therefore, even
though data set 4 contains little evidence (characters)
compared to data set 5, its overall data quality seems
to be much higher, which is reflected in the different
DD values.

So, if it is accepted that the overall level of homoplasy
of a data set influences its decisiveness (e.g., data set
5 is more decisive than data set 4), the questions arise
how this influence must be taken into account, and if
DD does it in a sensible way. Consider the data sets
of Fig. 12: both have a minimal homoplasy of 2 and a
mean homoplasy of 2.66, and as a result they have
the same DD value (0.25). However, because of the
distribution of possible homoplasies, it might be rea-
sonably argued that data set 6 is more decisive than
data set 7: it allows at least one possible tree to be
discarded (the second one) rather safely because the
amount of homoplasy in this tree is twice as much as
the amount of homoplasy in the two other trees. Data
set 7 has only a single most parsimonious tree (the

third one), but the two other trees for this data set are
only one step worse, which is a smaller difference than
in data set 6.
FIG. 11. Data set 5 consists of the decisive part of data set 4 (Fig.
9) and therefore data sets 4 and 5 have a distribution of possible
tree lengths with an identical shape.
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DISCUSSION

Goloboff (1991a) proposed the DD index to measure
how much the possible trees for a data set differ in
length. However, as shown above, data sets with iden-
tical distributions of tree lengths (e.g., data sets 1 and
2) or data sets with identically shaped but shifted distri-
butions of tree lengths (e.g., data sets 3 and 4) do not
necessarily have the same DD value. The distributions
of tree lengths of data sets with identical DD values
(e.g., data sets 6 and 7), on the other hand, may be
markedly different. Both types of examples show that
DD does not adequately measure the degree to which
possible trees differ in length.

From a technical point of view, the presented exam-
ples are easily explained. The DD value for a given data
set is completely determined by (1) the distribution of
tree lengths for the data set (from which SMIN and S
can unequivocally be calculated); and (2) S 2 M, the
homoplasy of the data set (which in combination with
the tree length distribution yields the scaling factor).
The pairs of hypothetical data sets that are contrasted
in Figs. 7–11 are constructed such that each time the
shape of the tree length distribution is constant (yield-
ing identical S 2 SMIN ) while the homoplasy varies.
Therefore, even if in each pairwise comparison the
differences in length of the possible trees are identical,
a different DD value is obtained. Given that each time
the lowest DD value is obtained for the data set with
highest homoplasy, it can be argued that the examples
presented in Figs. 7–11 illustrate a desirable property
rather than a defect: for the same difference in possible
tree lengths, a data set with more homoplasy has lower
overall data quality than a data set with less homo-
plasy.

The example presented in Fig. 12 is constructed dif-
ferently: the two data sets have identical M, SMIN, and
S, and hence identical DD values. Nevertheless, they
differ clearly in how much their possible trees differ
in tree length and homoplasy, and therefore they
should not be considered equally decisive. Goloboff
(1991a: 227) rightfully pointed out that decisiveness of
a data set and confidence in its most parsimonious
trees are not the same thing, and it might seem that

these properties are confounded in this example. How-
ever, this is not the case: the possible trees for data set
7 clearly differ less in tree length and in homoplasy
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ven (Travel Grant 11.7.94-94/69 to J.D.L.). J.D.L. is a postdoctoral
fellow of the F.W.O., the Fund for Scientific Research—Flanders (Bel-
FIG. 12. Data sets 6 and 7 have the same minimal and mean hom
for the three possible trees).

than the possible trees for data set 6, and therefore
data set 7 offers less information for tree choice than
data set 6 and it should be considered less decisive.

One could try to modify DD to reflect differences in
decisiveness as illustrated in Fig. 12, but rather than
to propose and discuss such modifications, we want
to point out that this would be a fruitless exercise. As
the discussed examples indicate, the concept of data
decisiveness seems to be too complex and elusive to
be captured in a single and simple index such as DD.
Moreover, even if it were possible to devise an index
that captures the essence of decisiveness, such a mea-
sure would not be of great help. Indeed, what system-
atists are really interested in is not how safely the worst
cladograms for a data set can be discarded, but how
strongly the groups that appear in most parsimonious
cladograms are supported by the data. As Goloboff
(1991a: 227) was well aware, this question is not an-
swered by simply considering data decisiveness. Other
32 De Laet and Smets
approaches (e.g., Felsenstein, 1985; Bremer, 1988, 1994;

Källersjö et al., 1992; Farris et al., 1994, 1996) are better
suited to address this question.
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APPENDIX: S AND G FOR INDECISIVE
DATA SETS

The number of characters in MIM(n), the minimal
indecisive matrix for n taxa 1 all-zero outgroup (n $

3; see Introduction), depends only on n and can be
obtained as follows (Goloboff, 1991a): let Ai denote a
binary character with i 1-entries for a given suite of
taxa. Since there are (n

i
) different Ai characters, the total

number of characters is

o
n21

i52 1n
i2 ,

which equals 2n 2 n 2 2 ((n
i
) stands for n!/(i!*(n 2 i)!),

the number of different ways in which the i 1-entries
can be assigned to the n taxa of the ingroup). In the
following, square brackets are used to indicate the inte-

ger part of a ratio; e.g., [i/2], with i an integer, denotes
the integer part of i/2.
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S(n)

According to Steel and Charleston (1995: 371; see
also Steel, 1993; Goloboff, 1991b: 396–397), the mean
character length of an indecisive data set sensu Golo-
boff (1991a) is equal to the expected length of a random
binary character on a random fully bifurcating tree, for
which they provided an exact nonrecursive equation.
However, a correction for the absence of uninformative
characters in indecisive data sets is necessary, as will
be discussed below. First we present an alternative der-
ivation.

The total number of steps or total length, S(n), for
MIM(n) is the same on any possible resolved clado-
gram. In the following derivation, we will assume a
completely pectinate cladogram in which the first
taxon of the matrix is the sister group of all the follow-
ing taxa and so on. The logic of the argument is as
follows: the number of 1-entries in MIM(n) (denoted
as SMAX ) provides an upper limit for S. This maximum
length is achieved when every occurrence of state one
is counted as a single step. However, character state
distributions may contain patterns of 1- and 0-entries
that require less steps than 1-entries, which leads to a
reduction of the required number of steps (compared
to the number of 1-entries in the pattern). As will be
shown, the patterns that lead to step reduction can
be classified into three types, and by summing the
occurrences of patterns of these types over the indeci-
sive data matrix, the total number of step reduction
can be calculated. If this number is subtracted from
SMAX, S(n) results.

Since every Ai character has by definition i 1-entries,
the calculation of SMAX is straightforward (the summa-
tion operators that appear in the following equations
can be eliminated by using finite sum equations as can
be found in, e.g., Prudnikov et al. (1988):

SMAX(n) 5 o
n21

i52 1n
i2∗i 5 n∗ (2n21 2 2).

A character state distribution will be described as a
concatenation of the symbols 0, 1, or x (x stands for
either 0 or 1). A subscript i to a symbol or a group of
symbols indicates that the symbol or group of symbols
is repeated i times. The order of the symbols refers to

the order of the taxa in the data matrix. As an example,
x13(01)2012 stands for the state distributions
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11110101011 or 01110101011 for 11 taxa A 2 L (assuming
that the taxa appear in alphabetical order in the data
set).

The first type of step reduction concerns character
state distributions of the form

xn2i2101i with 2 # i # n 2 1.

The 1i groups of this type appear at the distal end of
a pectinate cladogram and hence they require only a
single step each (see Fig. 1A for some general examples;
exhaustive lists for MIM(6) and MIM(7) are given in
Fig. 2A), resulting in a step reduction of (i 2 1). The
total step reduction of such patterns in the full matrix
can be calculated by enumerating all possible i values,
and within each i value all possible assignments to the
x positions. This yields

SR1(n) 5 o
n21

i52
(i 2 1)∗2n2i21 5 2n21 2 n.

The second type of step reduction concerns character
state distributions of the forms

or

xn2i2j2201i0xj

1i 0xn2i21

with 2 # i # n 2 2

and 0 # j # n 2 i 2 2,

with 2 # i # n 2 1

In this type of pattern (see Figs. 1A and 2A for exam-
ples), the 1i group is a pectinate group of taxa having
state 1 that is at both sides delimited by a taxon having
state 0 (the proximal zero-taxon in the second subpat-
tern is the outgroup). Each such group with i members
requires only two steps, giving a step reduction of (i
2 2). For the calculation of the total step reduction in
these patterns it has to be taken into account that the
01i0 group involved in the first subpattern can appear
in (n 2 i 2 1) different positions within the string of
the state distribution. This yields the total

SR2(n) 5 o
n22

i52
(i 2 2)∗(n 2 i 2 1)∗2n2i22

1 o
n21

i52
(i 2 2)*2n2i21 5 (n 2 4)∗2n23 1 1.
In the third type of step reduction, two groups of
the first or the second pattern are separated by a 0(10)i



FIG. 1A. Some examples of the three types of patterns in character state distributions that lead to step reduction. The outgroup (out) has
state zero. Note that a single character can simultaneously contain patterns of all three types (cf. the second character shown for type 3), and

t

length of a random binary character on a random fully
that a single character can contain more than one type 2 or type 3 pat

group (i $ 0). Every such case gives a single supple-
mentary step of reduction in addition to the reduction
that is present in the two other patterns that are in-
volved (see Figs. 1A and 2A for examples). Character
state distributions that satisfy these conditions are of
the following form:

xn22∗i2j25110(10)i11xj with 0 # 2*i # n 2 5

and 0 # j # n 2 2*i 2 5.

As a limiting case, the monophyletic group involved
can consist of only a single taxon:

xn22∗i24110(10)i1 with 0 # 2∗ i # n 2 4.

Taking into account that the 110(10)i11 group involved
in the first subpattern can appear in (n 2 2i 2 4) differ-
ent positions within the string of the state distribution,
the following total is obtained:

SR3(n) 5 o
[(n25)/2]

i50
(n 2 2i 2 4)∗2n22i25 1 o

[(n24)/2]

i50
2n22i24

5
1
9

((3n 2 8)∗2n23 1 (21)n).

In all other patterns of 0- and 1-entries, every 1-entry
is at least at one side (proximally or distally) separated

by at least two 0-entries from the next 1-entry. As a
result none of these remaining patterns will yield step
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reduction, and S(n) is obtained as SMAX(n) 2 SR1(n) 2

SR2(n) 2 SR3(n):

S(n) 5
1
9

(2n∗(3n 1 1) 2 (21)n) 2 (n 1 1).

The length of an indecisive matrix with n taxa in the
ingroup can as well be expressed as a function of t 5

n 1 1, the total number of taxa in the matrix, i.e., with
the all-zero outgroup included:

S(MIM(t 2 1)) 5
1
9

(2t21∗(3t 2 2) 1 (21)t) 2 t.

Random Data and Indecisive Data Sets

The same result follows in a straightforward way
from Steel (1993), who derived an exact nonrecursive
formula for the distribution of the length of binary
characters (no missing entries allowed) on fully re-
solved trees, together with exact nonrecursive formulas
for the mean and the variance of this distribution. As
discussed by Steel and Charleston (1995: 371), this
mean value m, (3t 2 2 2 (22)12t)/9, is the expected
34 De Laet and Smets
resolved tree (with random characters defined as char-
acters in which P(0), the probability that a taxon has
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FIG. 2A. All patterns of step reduction in MIM(6) (M 5 56, S 5 128, SMAX 5 180) and MIM(7) (M 5 119, S 5 305, SMAX 5 434), each time
assuming a pectinate cladogram with the taxa ordered as in the data matrices. Italic: the 1i group of type 1 patterns; underscored: the 1i group
of type 2 patterns; bold: the connecting 0(10)i group of type 3 patterns.
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state 0, and P(1), the probability that a taxon has state
1, are both equal to 1/2). As mentioned above, Steel
and Charleston’s (1995) observation that this mean is
also equal to the mean character length of an indecisive
data set sensu Goloboff (1991a) needs qualification.
The close relationship between random data (P(0) 5

P(1) 5 1/2) and indecisive data sets arises because the
universe of all possible random characters constitutes
an indecisive data set (Goloboff, 1991b), which we will
denote as U1(t) (with t the total number of terminals).
In this way the expected character length of a random
character on a random fully bifurcating tree is equal
to the mean character length of U1(t). U1(t), containing
all 2t different characters for t taxa, is composed of the
following subsets:

• all possible informative characters for t taxa:
• the 2(t2 1) 2 t 2 1 characters of MIM(t 2 1)
• the 2(t21) 2 t 2 1 characters of the complement of

MIM(t 2 1) (i.e., all character states, including
those of the all-zero outgroup are switched)

• all possible uninformative characters for t taxa:
• t characters in which only one taxon has state 0
• t characters in which only one taxon has state 1
• one character with all taxa having state 0
• one character with all taxa having state 1

S(MIM(t 2 1)) is then obtained as 1/2(m*2t 2 2 t).
Goloboff (1991b) discussed the relation between ran-

dom data and indecisiveness on the basis of Archie’s
(1989) approximate equation for the expected character
length on random trees. Archie’s approximation, (3t 2

2)/9, differs only by (22)12t/9 from Steel’s (1993) exact
result. This difference is largest for small numbers of
taxa, but even then the deviation is relatively small:
e.g., for t 5 3 the exact and the approximate values
are 0.7500 and 0.7778, respectively (rounded to four
decimals), a difference of 21/36; for t 5 10, 3.1113
(exact) and 3.1111 (approximate), a difference of only
1/4608. Goloboff (1991b: 397) reported a much greater
discrepancy between Archie’s result and his own calcu-
lations, which were based on his (Goloboff, 1991a) re-
cursive formula for the length of indecisive matrices
that contain only informative characters, which is exact
for n $ 7. Therefore Goloboff (1991b: 397) at the time

concluded that the large discrepancy is due to the fact
that Archie’s equation is only approximate. However,

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
De Laet and Smets

the discrepancy partly follows from a different conven-
tion of counting the taxa (considering only ingroup
versus considering ingroup 1 all-zero outgroup), and
partly from an inaccurate modification to take into
account uninformative characters (Goloboff, pers.
comm.).

Archie (1989; see also Archie and Felsenstein, 1993)
discussed also a second universe of random characters,
obtained by assigning the states of characters at ran-
dom with the probability that a particular taxon has
state 0, state 1, or a polymorphism [01] equal to 1/3
(the polymorphism can equally well be interpreted as
a missing entry or an inapplicable character, both com-
monly represented by a question mark). We will denote
this universe as U2(t). In this model of random data,
the exact equation for the expected number of steps
per character on a random dichotomous tree is (2t 2

2)/9 (Archie 1989: 256). This equation is easily verified
with the above results (Archie and Felsenstein, 1993: 62,
used the inverse of the following argument to derive an
exact but recursive formula for the mean character
length of U1(t)). U2(t) contains all 3t different characters
with states 0, 1, and ?, and it can be generated in the
following way: first consider U1(t), which contains all
U2(t) characters without question marks. Next consider
U1(t 2 1) and add a single row of question marks in
all (t

1
) possible positions. The result is a matrix with

(t
1
) times as many characters as U1(t 2 1), and this

matrix contains all U2(t) characters with precisely one
question mark. This can be generalized for characters
with any number of question marks, and since adding
rows of question marks does not change the number
of steps of a U1 matrix, the total number of steps of
U2(t) is obtained as the sum of the number of steps of
all composing U1(i) matrices, 0 $ i $ t:

S(U2(t)) 5 o
t

i50 1
t
i2∗S(U1(t 2 i)) 5

2
9

(t 2 1)∗3t.

Division by 3t, the total number of characters, confirms
Archie’s (1989) result.

G(n)
For every character Ai with i # [n/2], the maximal
number of steps equals i. For every character Ai with



G(t) 5 t∗(2 2 1) 2 ∗ .
Data Decisiveness 

i . [n/2], the maximal number of steps equals
n 2 i 1 1 (recall that there are n 1 1 taxa: the all-zero
outgroup must be taken into account also). Summation
over all possible informative characters gives

G(n) 5 o
[n/2]

i52 1n
i2∗i1 o

n21

i5[n/2]11 1
n
i2∗(n 2 i 1 1).

Since 1n
i2 5 1 n

n 2 i2 this can be expressed as

G(n) 5 o
[n/2]

i52 1n
i2∗i1 o

n2(n21)

i5n2[n/2]21 1
n
i2∗(n 2 (n 2 i) 1 1)

5 o
[n/2]

i52 1n
i2∗i1 o

n2[n/2]21

i51 1n
i2∗(i 1 1).

This equation is equivalent to the pair

5 G(neven) 5 o
n/2

i52 1
n 1 1

i 2∗i

G(nodd) 5 o
(n21)/2

i52 1n
i2∗(2i 1 1) 1 2n,

which, after elimination of the summations, equals

5G(neven) 5 (n 1 1)∗(2n21 2 1) 2
n 1 1

2
∗ 1 n

n/22
G(nodd) 5 (n 1 1)∗(2n21 2 1) 2 n∗ 1 n 2 1

(n 2 1)/22.

Two similar formulas, for the length of the random
universe U1(t) on an unresolved bush, are provided by
Steel (1993: 259). Algebraic manipulation ultimately
yields

G(n) 5 (n 1 1)∗(2n21 2 1) 2
n 1 1

2
∗ 1 n

[(n 1 1)/2]2.
Or in terms of t, the number of taxa with the all-zero
outgroup included
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t22 t t 2 1

2 1[t/2]2
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A. G. (1996). Parsimony jackknifing outperforms neighbor-joining.
Cladistics 12, 99–124.

Felsenstein, J. (1985). Confidence limits on phylogenies: An approach
using the bootstrap. Evolution 39, 783–791.

Goloboff, P. A. (1991a). Homoplasy and the choice among cladograms.
Cladistics 7, 215–232.

Goloboff, P. A. (1991b). Random data, homoplasy and information.
Cladistics 7, 395–406.
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